Supervoxel Attention Graphs for Long-Range Video Modeling

Yang Wang, Gedas Bertasius, Tae-Hyun Oh, A. Gupta, Minh Hoai, L. Torresani
{"title":"Supervoxel Attention Graphs for Long-Range Video Modeling","authors":"Yang Wang, Gedas Bertasius, Tae-Hyun Oh, A. Gupta, Minh Hoai, L. Torresani","doi":"10.1109/WACV48630.2021.00020","DOIUrl":null,"url":null,"abstract":"A significant challenge in video understanding is posed by the high dimensionality of the input, which induces large computational cost and high memory footprints. Deep convolutional models operating on video apply pooling and striding to reduce feature dimensionality and to increase the receptive field. However, despite these strategies, modern approaches cannot effectively leverage spatiotemporal structure over long temporal extents. In this paper we introduce an approach that reduces a video of 10 seconds to a sparse graph of only 160 feature nodes such that efficient inference in this graph produces state-of-the-art accuracy on challenging action recognition datasets. The nodes of our graph are semantic supervoxels that capture the spatiotemporal structure of objects and motion cues in the video, while edges between nodes encode spatiotemporal relations and feature similarity. We demonstrate that a shallow network that interleaves graph convolution and graph pooling on this compact representation implements an effective mechanism of relational reasoning yielding strong recognition results on both Charades and Something-Something.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A significant challenge in video understanding is posed by the high dimensionality of the input, which induces large computational cost and high memory footprints. Deep convolutional models operating on video apply pooling and striding to reduce feature dimensionality and to increase the receptive field. However, despite these strategies, modern approaches cannot effectively leverage spatiotemporal structure over long temporal extents. In this paper we introduce an approach that reduces a video of 10 seconds to a sparse graph of only 160 feature nodes such that efficient inference in this graph produces state-of-the-art accuracy on challenging action recognition datasets. The nodes of our graph are semantic supervoxels that capture the spatiotemporal structure of objects and motion cues in the video, while edges between nodes encode spatiotemporal relations and feature similarity. We demonstrate that a shallow network that interleaves graph convolution and graph pooling on this compact representation implements an effective mechanism of relational reasoning yielding strong recognition results on both Charades and Something-Something.
用于远程视频建模的超体素注意图
视频理解的一个重大挑战是输入的高维,这导致了大量的计算成本和高内存占用。在视频上运行的深度卷积模型采用池化和步进来降低特征维数,增加接受域。然而,尽管有这些策略,现代方法不能在长时间范围内有效地利用时空结构。在本文中,我们介绍了一种方法,该方法将10秒的视频减少到只有160个特征节点的稀疏图,以便该图中的有效推理在具有挑战性的动作识别数据集上产生最先进的精度。图中的节点是语义超体素,捕获视频中物体的时空结构和运动线索,而节点之间的边缘编码时空关系和特征相似性。我们证明了在这种紧凑表示上交织图卷积和图池的浅网络实现了一种有效的关系推理机制,在Charades和Something-Something上都产生了很强的识别结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信