Structural Dynamic Modification of Cylindrical Shells With Variable Thickness

F. M. Nasrekani, Shymal Shivneel Kumar, Sumesh Narayan
{"title":"Structural Dynamic Modification of Cylindrical Shells With Variable Thickness","authors":"F. M. Nasrekani, Shymal Shivneel Kumar, Sumesh Narayan","doi":"10.1115/pvp2020-21118","DOIUrl":null,"url":null,"abstract":"\n In this paper, the effects of some geometrical parameters on dynamic behavior of cylindrical shells with constant and variable thickness are studied. The equation of motion for the shell with constant thickness is extracted based on classical shell theory using Hamilton’s principle. These equations which are a system of coupled partial differential equations are solved analytically and the natural frequency is determined for cylindrical shells with constant thickness. The natural frequency for cylindrical shells with variable thickness is determined using finite element method by employing ANSYS. The results are compared and the effect of different geometric parameters such as length, thickness, and radius on natural frequency is discussed. The specific ranges for geometric parameters have been determined in which there is no significant difference between shells with constant or variable thickness. Cylindrical shells with variable thickness have better stress and strain distribution and optimum weight, in compare with the shells with constant thickness and it is important to know in which ranges of dimensions and geometrical parameters, there are some significant differences between their mechanical properties such as natural frequency. The results are compared with some other references.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2020-21118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the effects of some geometrical parameters on dynamic behavior of cylindrical shells with constant and variable thickness are studied. The equation of motion for the shell with constant thickness is extracted based on classical shell theory using Hamilton’s principle. These equations which are a system of coupled partial differential equations are solved analytically and the natural frequency is determined for cylindrical shells with constant thickness. The natural frequency for cylindrical shells with variable thickness is determined using finite element method by employing ANSYS. The results are compared and the effect of different geometric parameters such as length, thickness, and radius on natural frequency is discussed. The specific ranges for geometric parameters have been determined in which there is no significant difference between shells with constant or variable thickness. Cylindrical shells with variable thickness have better stress and strain distribution and optimum weight, in compare with the shells with constant thickness and it is important to know in which ranges of dimensions and geometrical parameters, there are some significant differences between their mechanical properties such as natural frequency. The results are compared with some other references.
变厚度圆柱壳结构的动力修正
本文研究了一些几何参数对定厚和变厚圆柱壳动力性能的影响。在经典壳体理论的基础上,利用哈密顿原理导出了等厚壳体的运动方程。这些方程是一个耦合的偏微分方程组,通过解析求解得到了定厚圆柱壳的固有频率。利用ANSYS软件,采用有限元法确定变厚度圆柱壳的固有频率。对结果进行了比较,并讨论了长度、厚度、半径等几何参数对固有频率的影响。确定了几何参数的具体范围,在此范围内,厚度不变或变的壳体之间没有显著差异。变厚度圆柱壳与定厚度圆柱壳相比,具有更好的应力应变分布和最优的重量,在哪个尺寸和几何参数范围内,其固有频率等力学性能存在显著差异。结果与其他文献进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信