Illumination Detection in IIIF Medieval Manuscripts Using Deep Learning

Fouad Aouinti, Victoria Eyharabide, Xavier Fresquet, Frederic Billiet
{"title":"Illumination Detection in IIIF Medieval Manuscripts Using Deep Learning","authors":"Fouad Aouinti, Victoria Eyharabide, Xavier Fresquet, Frederic Billiet","doi":"10.16995/dm.8073","DOIUrl":null,"url":null,"abstract":"Illuminated manuscripts are essential iconographic sources for medieval studies. With the massive adoption of IIIF, old and new digital collections of manuscripts are accessible online and provide interoperable image data. However, finding illuminations within the manuscripts’ pages is increasingly time consuming. This article proposes an approach based on machine learning and transfer learning that browses IIIF manuscript pages and detects the illuminated ones. To evaluate our approach, a group of domain experts created a new dataset of manually annotated IIIF manuscripts. The preliminary results show that our algorithm detects the main illuminated pages in a manuscript, thus reducing experts’ search time.","PeriodicalId":389425,"journal":{"name":"Digital Medievalist (DM) Open Issue","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Medievalist (DM) Open Issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16995/dm.8073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Illuminated manuscripts are essential iconographic sources for medieval studies. With the massive adoption of IIIF, old and new digital collections of manuscripts are accessible online and provide interoperable image data. However, finding illuminations within the manuscripts’ pages is increasingly time consuming. This article proposes an approach based on machine learning and transfer learning that browses IIIF manuscript pages and detects the illuminated ones. To evaluate our approach, a group of domain experts created a new dataset of manually annotated IIIF manuscripts. The preliminary results show that our algorithm detects the main illuminated pages in a manuscript, thus reducing experts’ search time.
使用深度学习的IIIF中世纪手稿中的照明检测
彩绘手稿是中世纪研究必不可少的图像来源。随着IIIF的大规模采用,新旧数字手稿收藏可以在线访问,并提供可互操作的图像数据。然而,在手稿中寻找启示越来越耗时。本文提出了一种基于机器学习和迁移学习的方法来浏览IIIF手稿页面并检测被照亮的页面。为了评估我们的方法,一组领域专家创建了一个人工注释的IIIF手稿的新数据集。初步结果表明,我们的算法能够检测出手稿中的主要照明页,从而减少了专家的搜索时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信