Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies

N. Basturk, A. Borowska, S. Grassi, Lennart F. Hoogerheide, H. K. van Dijk
{"title":"Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies","authors":"N. Basturk, A. Borowska, S. Grassi, Lennart F. Hoogerheide, H. K. van Dijk","doi":"10.2139/ssrn.3265977","DOIUrl":null,"url":null,"abstract":"A dynamic asset-allocation model is specified in probabilistic terms as a combination of return distributions resulting from multiple pairs of dynamic models and portfolio strategies based on momentum patterns in US industry returns. The nonlinear state space representation of the model allows efficient and robust simulation-based Bayesian inference using a novel non-linear filter. Combination weights can be cross-correlated and correlated over time using feedback mechanisms. Diagnostic analysis gives insight into model and strategy misspecification. Empirical results show that a smaller flexible model-strategy combination performs better in terms of expected return and risk than a larger basic model-strategy combination. Dynamic patterns in combination weights and diagnostic learning provide useful signals for improved modeling and policy, in particular, from a risk-management perspective.","PeriodicalId":203235,"journal":{"name":"ERN: Forecasting & Simulation (Monetary) (Topic)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting & Simulation (Monetary) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3265977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

A dynamic asset-allocation model is specified in probabilistic terms as a combination of return distributions resulting from multiple pairs of dynamic models and portfolio strategies based on momentum patterns in US industry returns. The nonlinear state space representation of the model allows efficient and robust simulation-based Bayesian inference using a novel non-linear filter. Combination weights can be cross-correlated and correlated over time using feedback mechanisms. Diagnostic analysis gives insight into model and strategy misspecification. Empirical results show that a smaller flexible model-strategy combination performs better in terms of expected return and risk than a larger basic model-strategy combination. Dynamic patterns in combination weights and diagnostic learning provide useful signals for improved modeling and policy, in particular, from a risk-management perspective.
动态模型与数据驱动投资组合策略的预测密度组合
动态资产配置模型在概率方面被指定为由多对动态模型和基于美国行业回报动量模式的投资组合策略产生的回报分布的组合。该模型的非线性状态空间表示允许使用一种新的非线性滤波器进行高效和鲁棒的基于仿真的贝叶斯推理。组合权重可以使用反馈机制进行交叉相关和随时间相关。诊断分析可以洞察模型和策略的错误说明。实证结果表明,较小的灵活模型-策略组合比较大的基本模型-策略组合在预期收益和风险方面表现更好。组合权重和诊断学习中的动态模式为改进建模和策略提供了有用的信号,特别是从风险管理的角度来看。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信