Computer aided detection of clustered microcalcifications in digitized mammograms using Gabor functions

E. Catanzariti, M. Ciminello, R. Prevete
{"title":"Computer aided detection of clustered microcalcifications in digitized mammograms using Gabor functions","authors":"E. Catanzariti, M. Ciminello, R. Prevete","doi":"10.1109/ICIAP.2003.1234061","DOIUrl":null,"url":null,"abstract":"This paper presents a multiresolution approach to the computer aided detection of clustered microcalcifications in digitized mammograms based on Gabor elementary functions. A bank of Gabor functions with varying spatial extent and tuned to different spatial frequencies is used for the extraction of microcalcifications characteristics. Classification is performed by an artificial neural network with supervised learning. First results show that most microcalcifications, isolated or clustered, are detected by our algorithm with a 95% value both for sensibility and specificity as measured on a test data set.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents a multiresolution approach to the computer aided detection of clustered microcalcifications in digitized mammograms based on Gabor elementary functions. A bank of Gabor functions with varying spatial extent and tuned to different spatial frequencies is used for the extraction of microcalcifications characteristics. Classification is performed by an artificial neural network with supervised learning. First results show that most microcalcifications, isolated or clustered, are detected by our algorithm with a 95% value both for sensibility and specificity as measured on a test data set.
利用Gabor函数对数字化乳房x线照片中聚集性微钙化的计算机辅助检测
本文提出了一种基于Gabor初等函数的数字化乳房x光片聚集性微钙化的多分辨率计算机辅助检测方法。利用一组具有不同空间范围和调谐到不同空间频率的Gabor函数提取微钙化特征。分类由具有监督学习的人工神经网络执行。第一个结果表明,我们的算法检测到大多数微钙化,无论是孤立的还是聚集的,在测试数据集上的敏感性和特异性都达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信