Complete and incomplete randomized NP problems

Y. Gurevich
{"title":"Complete and incomplete randomized NP problems","authors":"Y. Gurevich","doi":"10.1109/SFCS.1987.14","DOIUrl":null,"url":null,"abstract":"A randomized decision problem is a decision problem together with a probability function on the instances. Leonid Levin [Lev1] generalized the NP completeness theory to the case of properly defined randomized NP (shortly, RNP) problems and proved the completeness of a randomized version of the bounded tiling problem with respect to (appropriately generalized) Ptime reductions. Levin's proof naturally splits into two parts; a randomized version of the bounded halting problem is proved complete and then reduced to Randomized Tiling. David Johnson [Jo] provided some intuition behind Levin's definitions and proofs, and challenged readers to find additional natural complete RNP problems.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

A randomized decision problem is a decision problem together with a probability function on the instances. Leonid Levin [Lev1] generalized the NP completeness theory to the case of properly defined randomized NP (shortly, RNP) problems and proved the completeness of a randomized version of the bounded tiling problem with respect to (appropriately generalized) Ptime reductions. Levin's proof naturally splits into two parts; a randomized version of the bounded halting problem is proved complete and then reduced to Randomized Tiling. David Johnson [Jo] provided some intuition behind Levin's definitions and proofs, and challenged readers to find additional natural complete RNP problems.
完全和不完全随机NP问题
随机决策问题是一个带有实例概率函数的决策问题。Leonid Levin [Lev1]将NP完备性理论推广到适当定义的随机NP(简称RNP)问题,并证明了关于(适当广义的)Ptime约简的有界平铺问题的一个随机版本的完备性。莱文的证明自然分为两部分;证明了有界停止问题的一个随机化版本是完全的,并将其简化为随机化平铺。David Johnson [Jo]在Levin的定义和证明背后提供了一些直觉,并要求读者找到更多的自然完全RNP问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信