Cohesive Elements or Phase-Field Fracture: Which Method Is Better for Dynamic Fracture Analyses?

T. Dally, Carola Bilgen, Marek Werner, K. Weinberg
{"title":"Cohesive Elements or Phase-Field Fracture: Which Method Is Better for Dynamic Fracture Analyses?","authors":"T. Dally, Carola Bilgen, Marek Werner, K. Weinberg","doi":"10.5772/intechopen.92180","DOIUrl":null,"url":null,"abstract":"Numerical techniques to simulate crack propagation can roughly be divided into sharp and diffuse interface methods. Two prominent approaches to quantitative dynamic fracture analysis are compared here. Specifically, an adaptive cohesive element technique and a phase-field fracture approach are applied to simulate Hopkinson bar experiments on the fracture toughness of high-performance concrete. The experimental results are validated numerically in the sense of an inverse analysis. Both methods allow predictive numerical simulations of crack growth with an a priori unknown path and determine the related material parameter in a quantitative manner. Reliability, precision, and numerical costs differ however.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling and Simulation in Engineering - Selected Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Numerical techniques to simulate crack propagation can roughly be divided into sharp and diffuse interface methods. Two prominent approaches to quantitative dynamic fracture analysis are compared here. Specifically, an adaptive cohesive element technique and a phase-field fracture approach are applied to simulate Hopkinson bar experiments on the fracture toughness of high-performance concrete. The experimental results are validated numerically in the sense of an inverse analysis. Both methods allow predictive numerical simulations of crack growth with an a priori unknown path and determine the related material parameter in a quantitative manner. Reliability, precision, and numerical costs differ however.
内聚元素还是相场断裂:哪一种方法更适合动态断裂分析?
模拟裂纹扩展的数值方法大致可分为尖锐界面法和扩散界面法。本文比较了定量动态断裂分析的两种主要方法。具体而言,采用自适应内聚单元技术和相场断裂方法模拟高性能混凝土断裂韧性的霍普金森杆试验。在逆向分析的意义上对实验结果进行了数值验证。这两种方法都可以对具有先验未知路径的裂纹扩展进行预测数值模拟,并定量确定相关的材料参数。然而,可靠性、精度和数值成本有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信