Mikel Leturiondo, S. R. D. Gauna, J. Gutiérrez, D. González-Otero, J. Ruiz, L. Leturiondo, P. Sáiz
{"title":"Waveform Capnography for Monitoring Ventilation during Cardiopulmonary Resuscitation: The Problem of Chest Compression Artifact","authors":"Mikel Leturiondo, S. R. D. Gauna, J. Gutiérrez, D. González-Otero, J. Ruiz, L. Leturiondo, P. Sáiz","doi":"10.5772/INTECHOPEN.84430","DOIUrl":null,"url":null,"abstract":"Sudden cardiac arrest (SCA) is the sudden cessation of the heart’s effective pumping function, confirmed by the absence of pulse and breathing. Without appropriate treatment, it leads to sudden cardiac death, considered responsible for half of the global cardiac disease deaths. Cardiopulmonary resuscitation (CPR) is a key intervention during SCA. Current resuscitation guidelines emphasize the use of waveform capnography during CPR in order to enhance CPR quality and improve patient outcomes. Capnography represents the concentration of the partial pressure of carbon dioxide (CO 2 ) in respiratory gases and reflects ventilation and perfusion of the patient. Waveform capnography should be used for confirming the correct placement of the tracheal tube and monitoring ventilation. Other potential uses of capnography in resuscitation involve monitoring CPR quality, early identification of restoration of spontaneous circulation (ROSC), and determination of patient prognosis. An important role of waveform capnography is ventilation rate monitoring to prevent overventilation. However, some studies have reported the appearance of high-frequency oscillations synchronized with chest compressions superimposed on the capnogram. This chapter explores the incidence of chest compression artifact in out-of-hospital capnograms, assesses its negative influence in the automated detection of ventilations, and proposes several methods to enhance ventilation detection and capnography waveform.","PeriodicalId":178820,"journal":{"name":"Cardiac Diseases and Interventions in 21st Century","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiac Diseases and Interventions in 21st Century","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sudden cardiac arrest (SCA) is the sudden cessation of the heart’s effective pumping function, confirmed by the absence of pulse and breathing. Without appropriate treatment, it leads to sudden cardiac death, considered responsible for half of the global cardiac disease deaths. Cardiopulmonary resuscitation (CPR) is a key intervention during SCA. Current resuscitation guidelines emphasize the use of waveform capnography during CPR in order to enhance CPR quality and improve patient outcomes. Capnography represents the concentration of the partial pressure of carbon dioxide (CO 2 ) in respiratory gases and reflects ventilation and perfusion of the patient. Waveform capnography should be used for confirming the correct placement of the tracheal tube and monitoring ventilation. Other potential uses of capnography in resuscitation involve monitoring CPR quality, early identification of restoration of spontaneous circulation (ROSC), and determination of patient prognosis. An important role of waveform capnography is ventilation rate monitoring to prevent overventilation. However, some studies have reported the appearance of high-frequency oscillations synchronized with chest compressions superimposed on the capnogram. This chapter explores the incidence of chest compression artifact in out-of-hospital capnograms, assesses its negative influence in the automated detection of ventilations, and proposes several methods to enhance ventilation detection and capnography waveform.