{"title":"Indecomposability of various profinite groups arising from hyperbolic curves","authors":"Arata Minamide","doi":"10.14989/DOCTOR.K20158","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the etale fundamental group of a hyperbolic curve over an arithmetic field [e.g., a finite extension field of Q or Qp] or an algebraically closed field is indecomposable [i.e., cannot be decomposed into the direct product of nontrivial profinite groups]. Moreover, in the case of characteristic zero, we also prove that the etale fundamental group of the configuration space of a curve of the above type is indecomposable. Finally, we consider the topic of indecomposability in the context of the comparison of the absolute Galois group of Q with the Grothendieck-Teichmuller group GT and pose the question: Is GT indecomposable? We give an affirmative answer to a pro-l version of this question","PeriodicalId":267320,"journal":{"name":"Mathematical journal of Okayama University","volume":"46 24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical journal of Okayama University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14989/DOCTOR.K20158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we prove that the etale fundamental group of a hyperbolic curve over an arithmetic field [e.g., a finite extension field of Q or Qp] or an algebraically closed field is indecomposable [i.e., cannot be decomposed into the direct product of nontrivial profinite groups]. Moreover, in the case of characteristic zero, we also prove that the etale fundamental group of the configuration space of a curve of the above type is indecomposable. Finally, we consider the topic of indecomposability in the context of the comparison of the absolute Galois group of Q with the Grothendieck-Teichmuller group GT and pose the question: Is GT indecomposable? We give an affirmative answer to a pro-l version of this question