Rohit Varkey Thankachan, Eric R. Hein, B. Swenson, James P. Fairbanks
{"title":"Integrating productivity-oriented programming languages with high-performance data structures","authors":"Rohit Varkey Thankachan, Eric R. Hein, B. Swenson, James P. Fairbanks","doi":"10.1109/HPEC.2017.8091068","DOIUrl":null,"url":null,"abstract":"This paper shows that Julia provides sufficient performance to bridge the performance gap between productivity-oriented languages and low-level languages for complex memory intensive computation tasks such as graph traversal. We provide performance guidelines for using complex low-level data structures in high productivity languages and present the first parallel integration on the productivity-oriented language side for graph analysis. Performance on the Graph500 benchmark demonstrates that the Julia implementation is competitive with the native C/OpenMP implementation.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper shows that Julia provides sufficient performance to bridge the performance gap between productivity-oriented languages and low-level languages for complex memory intensive computation tasks such as graph traversal. We provide performance guidelines for using complex low-level data structures in high productivity languages and present the first parallel integration on the productivity-oriented language side for graph analysis. Performance on the Graph500 benchmark demonstrates that the Julia implementation is competitive with the native C/OpenMP implementation.