Intruder deductions, constraint solving and insecurity decision in presence of exclusive or

Hubert Comon-Lundh, Vitaly Shmatikov
{"title":"Intruder deductions, constraint solving and insecurity decision in presence of exclusive or","authors":"Hubert Comon-Lundh, Vitaly Shmatikov","doi":"10.1109/LICS.2003.1210067","DOIUrl":null,"url":null,"abstract":"We present decidability results for the verification of cryptographic protocols in the presence of equational theories corresponding to xor and Abelian groups. Since the perfect cryptography assumption is unrealistic for cryptographic primitives with visible algebraic properties such as xor, we extend the conventional Dolev-Yao model by permitting the intruder to exploit these properties. We show that the ground reachability problem in NP for the extended intruder theories in the cases of xor and Abelian groups. This result follows from a normal proof theorem. Then, we show how to lift this result in the xor case: we consider a symbolic constraint system expressing the reachability (e.g., secrecy) problem for a finite number of sessions. We prove that such a constraint system is decidable, relying in particular on an extension of combination algorithms for unification procedures. As a corollary, this enables automatic symbolic verification of cryptographic protocols employing xor for a fixed number of sessions.","PeriodicalId":280809,"journal":{"name":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"193","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2003.1210067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 193

Abstract

We present decidability results for the verification of cryptographic protocols in the presence of equational theories corresponding to xor and Abelian groups. Since the perfect cryptography assumption is unrealistic for cryptographic primitives with visible algebraic properties such as xor, we extend the conventional Dolev-Yao model by permitting the intruder to exploit these properties. We show that the ground reachability problem in NP for the extended intruder theories in the cases of xor and Abelian groups. This result follows from a normal proof theorem. Then, we show how to lift this result in the xor case: we consider a symbolic constraint system expressing the reachability (e.g., secrecy) problem for a finite number of sessions. We prove that such a constraint system is decidable, relying in particular on an extension of combination algorithms for unification procedures. As a corollary, this enables automatic symbolic verification of cryptographic protocols employing xor for a fixed number of sessions.
排除或存在下的入侵者演绎、约束求解和不安全决策
在对应于xor群和阿贝尔群的等式理论存在下,给出了验证密码协议的可判定性结果。由于完美的密码学假设对于具有可见代数属性(如xor)的密码学原语是不现实的,因此我们通过允许入侵者利用这些属性来扩展传统的Dolev-Yao模型。在xor和Abelian群的情况下,给出了扩展入侵者理论在NP中的地面可达性问题。这个结果是由一个普通的证明定理得出的。然后,我们展示了如何在xor情况下提升这个结果:我们考虑一个符号约束系统,表示有限数量会话的可达性(例如,保密性)问题。我们证明了这种约束系统是可决定的,特别依赖于统一过程的组合算法的扩展。作为一个必然结果,这允许对固定数量的会话使用xor的加密协议进行自动符号验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信