{"title":"Using real-valued genetic algorithms to evolve rule sets for classification","authors":"A. Corcoran, S. Sen","doi":"10.1109/ICEC.1994.350030","DOIUrl":null,"url":null,"abstract":"In this paper, we use a genetic algorithm to evolve a set of classification rules with real-valued attributes. We show how real-valued attribute ranges could be encoded with real-valued genes and present a new uniform method for representing don't cares in the rules. We view supervised classification as an optimization problem, and evolve rule sets that maximize the number of correct classifications of input instances. We use a variant of the Pitt approach to genetic-based machine learning system with a novel conflict resolution mechanism between competing rules within the same rule set. Experimental results demonstrate the effectiveness of our proposed approach on a benchmark wine classifier system.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"170","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.350030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 170
Abstract
In this paper, we use a genetic algorithm to evolve a set of classification rules with real-valued attributes. We show how real-valued attribute ranges could be encoded with real-valued genes and present a new uniform method for representing don't cares in the rules. We view supervised classification as an optimization problem, and evolve rule sets that maximize the number of correct classifications of input instances. We use a variant of the Pitt approach to genetic-based machine learning system with a novel conflict resolution mechanism between competing rules within the same rule set. Experimental results demonstrate the effectiveness of our proposed approach on a benchmark wine classifier system.<>