Query size estimation using clustering techniques

Xiaoyuan Su, M. Kubát, M. Tapia, C. Hu
{"title":"Query size estimation using clustering techniques","authors":"Xiaoyuan Su, M. Kubát, M. Tapia, C. Hu","doi":"10.1109/ICTAI.2005.105","DOIUrl":null,"url":null,"abstract":"For managing the performance of database management systems, we need to be able to estimate the size of queries. Query size estimation (QSE) is difficult if the queries are associated with more than one attribute. Here, we propose, and experimentally evaluate, a novel technique that builds on cluster analysis. Empirical results indicate that, in particular, density-based clustering QSE techniques are beneficial for medium and large sized databases where they compare favourably with partitioning clustering QSE ones such as k-means. This is observed especially in the case of noisy and dense datasets","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

For managing the performance of database management systems, we need to be able to estimate the size of queries. Query size estimation (QSE) is difficult if the queries are associated with more than one attribute. Here, we propose, and experimentally evaluate, a novel technique that builds on cluster analysis. Empirical results indicate that, in particular, density-based clustering QSE techniques are beneficial for medium and large sized databases where they compare favourably with partitioning clustering QSE ones such as k-means. This is observed especially in the case of noisy and dense datasets
使用聚类技术估计查询大小
为了管理数据库管理系统的性能,我们需要能够估计查询的大小。如果查询与多个属性相关联,则很难估计查询大小(QSE)。在这里,我们提出并实验评估了一种基于聚类分析的新技术。实证结果表明,基于密度的聚类QSE技术尤其适用于大中型数据库,它们与k-means等分区聚类QSE技术相比具有优势。这在嘈杂和密集数据集的情况下尤其明显
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信