{"title":"Demystifying Power and Performance Bottlenecks in Autonomous Driving Systems","authors":"P. H. E. Becker, J. Arnau, Antonio González","doi":"10.1109/IISWC50251.2020.00028","DOIUrl":null,"url":null,"abstract":"Autonomous Vehicles (AVs) have the potential to radically change the automotive industry. However, computing solutions for AVs have to meet severe performance and power constraints to guarantee a safe driving experience. Current solutions either exhibit high cost and power dissipation or fail to meet the stringent latency constraints. Therefore, the popularization of AVs requires a low-cost yet effective computing system. Understanding the sources of latency and energy consumption is key in order to improve autonomous driving systems. In this paper, we present a detailed characterization of Autoware, a modern self-driving car system. We analyze the performance and power of the different components and leverage hardware counters to identify the main bottlenecks. Our approach to AV characterization avoids pitfalls of previous works: profiling individual components in isolation and neglecting LiDAR-related components. We base our characterization on a rigorous methodology that considers the entire software stack. Profiling the end-to-end system accounts for interference and contention among different components that run in parallel, also including memory transfers to communicate data. We show that all these factors have a high impact on latency and cannot be measured by profiling isolated modules. Our characterization provides novel insights, some of the interesting findings are the following. First, contention among different modules drastically impacts latency and performance predictability. Second, LiDAR-related components are important contributors to the latency of the system. Finally, a modern platform with a high-end CPU and GPU cannot achieve real-time performance when considering the entire end-to-end system.","PeriodicalId":365983,"journal":{"name":"2020 IEEE International Symposium on Workload Characterization (IISWC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC50251.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Autonomous Vehicles (AVs) have the potential to radically change the automotive industry. However, computing solutions for AVs have to meet severe performance and power constraints to guarantee a safe driving experience. Current solutions either exhibit high cost and power dissipation or fail to meet the stringent latency constraints. Therefore, the popularization of AVs requires a low-cost yet effective computing system. Understanding the sources of latency and energy consumption is key in order to improve autonomous driving systems. In this paper, we present a detailed characterization of Autoware, a modern self-driving car system. We analyze the performance and power of the different components and leverage hardware counters to identify the main bottlenecks. Our approach to AV characterization avoids pitfalls of previous works: profiling individual components in isolation and neglecting LiDAR-related components. We base our characterization on a rigorous methodology that considers the entire software stack. Profiling the end-to-end system accounts for interference and contention among different components that run in parallel, also including memory transfers to communicate data. We show that all these factors have a high impact on latency and cannot be measured by profiling isolated modules. Our characterization provides novel insights, some of the interesting findings are the following. First, contention among different modules drastically impacts latency and performance predictability. Second, LiDAR-related components are important contributors to the latency of the system. Finally, a modern platform with a high-end CPU and GPU cannot achieve real-time performance when considering the entire end-to-end system.