{"title":"A Dual-polarized High-NA Achromatic Transmission Huygens’ Metalens","authors":"Xiaoluo He, A. Wong","doi":"10.1109/ISAP53582.2022.9998659","DOIUrl":null,"url":null,"abstract":"In this paper, we present the first dual-polarized achromatic metalens made from a Huygens’ metasurface element. Employing a novel Huygens’ architecture with miniaturized size and improved tuning range, we achieve wideband, linear-phased, highly transmissive elements capable of generating a large range true-time-delay. This allows us to construct a dual-polarized achromatic metalens with a large numerical aperture. As a proof of concept, we design a dual-polarized achromatic metalens for which the focal length is maintained at $6.4\\pm 0.15\\lambda_{c}$ across the operation band (K-band, 21.5-26 GHz), where $\\lambda_{c}=12.5$ mm is the wavelength corresponding to the center frequency of 24 GHz. The simulated focusing efficiency is over 65% across the operation bandwidth. The combination of the miniaturized unit cell and increased tuning range allows this dual-polarized achromatic metasurface to have a numerical aperture of 0.64 – which is the highest known among achromatic metalenses in the microwave region. This metasurface shall find attractive applications in broadband imaging and communication at microwave and mm-wave frequencies.","PeriodicalId":137840,"journal":{"name":"2022 International Symposium on Antennas and Propagation (ISAP)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Antennas and Propagation (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP53582.2022.9998659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present the first dual-polarized achromatic metalens made from a Huygens’ metasurface element. Employing a novel Huygens’ architecture with miniaturized size and improved tuning range, we achieve wideband, linear-phased, highly transmissive elements capable of generating a large range true-time-delay. This allows us to construct a dual-polarized achromatic metalens with a large numerical aperture. As a proof of concept, we design a dual-polarized achromatic metalens for which the focal length is maintained at $6.4\pm 0.15\lambda_{c}$ across the operation band (K-band, 21.5-26 GHz), where $\lambda_{c}=12.5$ mm is the wavelength corresponding to the center frequency of 24 GHz. The simulated focusing efficiency is over 65% across the operation bandwidth. The combination of the miniaturized unit cell and increased tuning range allows this dual-polarized achromatic metasurface to have a numerical aperture of 0.64 – which is the highest known among achromatic metalenses in the microwave region. This metasurface shall find attractive applications in broadband imaging and communication at microwave and mm-wave frequencies.