A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites

V. Desai, P. Khatri, A. Done, Aviva Friedman, M. Tainsky, S. Drăghici
{"title":"A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites","authors":"V. Desai, P. Khatri, A. Done, Aviva Friedman, M. Tainsky, S. Drăghici","doi":"10.1109/CIBCB.2005.1594918","DOIUrl":null,"url":null,"abstract":"The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3.
预测条件特异性转录因子结合位点的新型生物信息学技术
近年来,高通量测序和DNA微阵列技术的出现以及生物信息学的进步使生物学研究发生了革命性的变化。然而,控制基因表达的确切机制在很大程度上是未知的,尽管有许多努力去理解它们。我们描述了一种生物信息学技术,可以潜在地识别条件特异性转录因子结合位点。我们将我们的技术应用于细胞永生数据集。我们的分析揭示了CXCL基因家族上游区域的相似性,这解释了CXCL1和CXCL2基因与CXCL3基因在特定条件下的差异表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信