Distributed interference management using Q-Learning in cognitive femtocell networks: New USRP-based implementation

Medhat H. M. Elsayed, Amr M. Mohamed
{"title":"Distributed interference management using Q-Learning in cognitive femtocell networks: New USRP-based implementation","authors":"Medhat H. M. Elsayed, Amr M. Mohamed","doi":"10.1109/NTMS.2015.7266488","DOIUrl":null,"url":null,"abstract":"Femtocell networks have become a promising solution in supporting high data rates for 5G systems, where cell densification is performed using the small femtocells. However, femtocell networks have many challenges. One of the major challenges of femtocell networks is the interference management problem, where deployment of femtocells in the range of macro-cells may degrade the performance of the macrocell. In this paper, we develop a new platform for studying interference management in distributed femtocell networks using reinforcement learning approach. We design a complete MAC protocol to perform distributed power allocation using Q-Learning algorithm, where both independent and cooperative learning approaches are applied across network nodes. The objective of the Q-Learning algorithms is to maximize aggregate femtocells capacity, while maintaining the QoS for the Macrocell users. Furthermore, we present the realization of the algorithms using GNURadio and USRP platforms. Performance evaluation are conducted in terms of macrocell capacity convergence to a target capacity and improvement of aggregate femtocells capacity.","PeriodicalId":115020,"journal":{"name":"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTMS.2015.7266488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Femtocell networks have become a promising solution in supporting high data rates for 5G systems, where cell densification is performed using the small femtocells. However, femtocell networks have many challenges. One of the major challenges of femtocell networks is the interference management problem, where deployment of femtocells in the range of macro-cells may degrade the performance of the macrocell. In this paper, we develop a new platform for studying interference management in distributed femtocell networks using reinforcement learning approach. We design a complete MAC protocol to perform distributed power allocation using Q-Learning algorithm, where both independent and cooperative learning approaches are applied across network nodes. The objective of the Q-Learning algorithms is to maximize aggregate femtocells capacity, while maintaining the QoS for the Macrocell users. Furthermore, we present the realization of the algorithms using GNURadio and USRP platforms. Performance evaluation are conducted in terms of macrocell capacity convergence to a target capacity and improvement of aggregate femtocells capacity.
认知飞蜂窝网络中使用Q-Learning的分布式干扰管理:新的基于usrp的实现
在支持5G系统的高数据速率方面,Femtocell网络已经成为一种很有前途的解决方案,在5G系统中,使用小型的Femtocell进行蜂窝密集化。然而,移动蜂窝网络面临许多挑战。飞蜂窝网络面临的主要挑战之一是干扰管理问题,在宏蜂窝范围内部署飞蜂窝可能会降低宏蜂窝的性能。在本文中,我们开发了一个新的平台,用于研究分布式飞蜂窝网络中使用强化学习方法的干扰管理。我们设计了一个完整的MAC协议,使用Q-Learning算法执行分布式功率分配,其中在网络节点上应用了独立和合作学习方法。Q-Learning算法的目标是在保持Macrocell用户的QoS的同时,最大限度地提高femtocells的总容量。此外,我们还介绍了在GNURadio和USRP平台上实现的算法。从大蜂窝容量向目标容量收敛和飞蜂窝总容量提高两方面进行了性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信