Berry phases and Rabi oscillations

D. Moore
{"title":"Berry phases and Rabi oscillations","authors":"D. Moore","doi":"10.1088/0954-8998/4/2/006","DOIUrl":null,"url":null,"abstract":"The Berry phases for a spherically symmetric atom in a circularly polarized semiclassical radiation field are calculated using an operator decomposition scheme. The author then takes the two-level atomic limit and recovers the Berry phases already calculated by other means. His attention is then focused on the two-level atom. He shows that in the semiclassical problem the Rabi oscillations do not arise from cyclic wavefunctions. Hence any comparison of the phases of the initial and final states must use the Pancharatnam connection. In the quantum model he no longer gets perfect Rabi oscillations as there are partial collapses and revivals. These collapses and revivals are exploited in alternative quantum optical models, the Raman coupling model and intensity-dependent coupling model, for which they are exactly cyclic. Again he finds that he must invoke the Pancharatnam connection.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Optics: Journal of The European Optical Society Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0954-8998/4/2/006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Berry phases for a spherically symmetric atom in a circularly polarized semiclassical radiation field are calculated using an operator decomposition scheme. The author then takes the two-level atomic limit and recovers the Berry phases already calculated by other means. His attention is then focused on the two-level atom. He shows that in the semiclassical problem the Rabi oscillations do not arise from cyclic wavefunctions. Hence any comparison of the phases of the initial and final states must use the Pancharatnam connection. In the quantum model he no longer gets perfect Rabi oscillations as there are partial collapses and revivals. These collapses and revivals are exploited in alternative quantum optical models, the Raman coupling model and intensity-dependent coupling model, for which they are exactly cyclic. Again he finds that he must invoke the Pancharatnam connection.
贝里相和拉比振荡
利用算符分解格式计算了圆极化半经典辐射场中球对称原子的Berry相。然后取两能级原子极限,恢复用其他方法计算出的贝里相。然后他的注意力集中在二能级原子上。他证明了在半经典问题中,拉比振荡不是由循环波函数引起的。因此,任何初始状态和最终状态阶段的比较都必须使用Pancharatnam连接。在量子模型中,他不再得到完美的拉比振荡,因为有部分坍塌和恢复。这些坍缩和恢复被用于替代的量子光学模型,拉曼耦合模型和强度依赖耦合模型,它们是精确循环的。他再次发现他必须引用潘查拉特南的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信