3D visualization of geophysical resistivity data to delineate contamination anomalies in a landfill

V. Gonçalves, Maria João Fontoura, Paulo Dias, R. Moura, B. Santos
{"title":"3D visualization of geophysical resistivity data to delineate contamination anomalies in a landfill","authors":"V. Gonçalves, Maria João Fontoura, Paulo Dias, R. Moura, B. Santos","doi":"10.1109/IV.2012.38","DOIUrl":null,"url":null,"abstract":"Geophysical data represent subsoil structure in a specific area and can be used to extract subsoil information for various purposes. In this work we used this data type to detect anomalies/contamination in the subsoil. Our case study was based on data acquired around a landfill and the main objective is identifying contaminated areas as a result of leakage in landfill. This involves the application of statistical methods to detect anomalous values taking into account the whole data set, subdividing it in sublevels in relation to the surface, instead of using a single threshold (as usual). This work combines in the same software package the anomaly statistical analysis and several 3D representations of the results to validate and also helps understanding the final results of the analysis. Given that the original data used in the analysis, resistivity sections, is normally very sparse, a kriging geostatistical process was used to interpolate data in order to provide a volumetric representation of the subsoil in the area, providing a continuous spatial visualization.","PeriodicalId":264951,"journal":{"name":"2012 16th International Conference on Information Visualisation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Conference on Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2012.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Geophysical data represent subsoil structure in a specific area and can be used to extract subsoil information for various purposes. In this work we used this data type to detect anomalies/contamination in the subsoil. Our case study was based on data acquired around a landfill and the main objective is identifying contaminated areas as a result of leakage in landfill. This involves the application of statistical methods to detect anomalous values taking into account the whole data set, subdividing it in sublevels in relation to the surface, instead of using a single threshold (as usual). This work combines in the same software package the anomaly statistical analysis and several 3D representations of the results to validate and also helps understanding the final results of the analysis. Given that the original data used in the analysis, resistivity sections, is normally very sparse, a kriging geostatistical process was used to interpolate data in order to provide a volumetric representation of the subsoil in the area, providing a continuous spatial visualization.
三维可视化地球物理电阻率数据来描绘垃圾填埋场的污染异常
地球物理数据代表特定区域的底土结构,可用于提取各种目的的底土信息。在这项工作中,我们使用这种数据类型来检测底土中的异常/污染。我们的案例研究是基于在垃圾填埋场周围获得的数据,主要目的是确定由于垃圾填埋场泄漏而受到污染的区域。这涉及到应用统计方法来检测异常值,考虑到整个数据集,将其细分为与表面相关的子级别,而不是使用单个阈值(像往常一样)。这项工作在同一个软件包中结合了异常统计分析和结果的几个3D表示来验证,也有助于理解分析的最终结果。由于分析中使用的原始数据(电阻率剖面)通常非常稀疏,因此使用克里格地质统计过程对数据进行插值,以便提供该地区底土的体积表示,从而提供连续的空间可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信