S. Pei, Jian-Jiun Ding, Jiun-De Huang, Guo-Cyuan Guo
{"title":"Short response Hilbert transform for edge detection","authors":"S. Pei, Jian-Jiun Ding, Jiun-De Huang, Guo-Cyuan Guo","doi":"10.1109/APCCAS.2008.4746029","DOIUrl":null,"url":null,"abstract":"In this paper, we define the short-response Hilbert transform (SRHLT) and use it for edge detection. The SRHLT has a parameter b. When b = 0, it becomes the Hilbert transform (HLT). When b is infinite, it becomes differentiation. Many edge detection algorithms are based on differentiation. However, they are sensitive to noise. By contrast, when using the HLT for edge detection, the noise is reduced but the resolution is poor. The proposed SRHLT in this paper can compromise the advantages of differentiation and HLTs. It is robust to noise and can simultaneously distinguish edges from non-edge regions very successfully.","PeriodicalId":344917,"journal":{"name":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2008.4746029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this paper, we define the short-response Hilbert transform (SRHLT) and use it for edge detection. The SRHLT has a parameter b. When b = 0, it becomes the Hilbert transform (HLT). When b is infinite, it becomes differentiation. Many edge detection algorithms are based on differentiation. However, they are sensitive to noise. By contrast, when using the HLT for edge detection, the noise is reduced but the resolution is poor. The proposed SRHLT in this paper can compromise the advantages of differentiation and HLTs. It is robust to noise and can simultaneously distinguish edges from non-edge regions very successfully.