Real-time neural backstepping control for a helicopter prototype

Larbi Djilali, Oscar J. Suarez, E. Sánchez, A. Alanis, Aldo Pardo García
{"title":"Real-time neural backstepping control for a helicopter prototype","authors":"Larbi Djilali, Oscar J. Suarez, E. Sánchez, A. Alanis, Aldo Pardo García","doi":"10.1109/LA-CCI.2017.8285689","DOIUrl":null,"url":null,"abstract":"This paper presents a discrete-time backstepping controller based on a neural model for a Quanser 2-Degree Of Freedom (DOF) helicopter. The proposed controller is used to track the pitch and yaw position references independently. This controller is based on a Recurrent High Order Neural Network (RHONN) trained with an Extended Kalman Filter (EKF). The RHONN works as an identifier to obtain an adequate Quanser 2-DOF helicopter mathematic model, which is robust in presence of disturbances and parameter variations. To examine the robustness of the proposed controller, simulations using Matlab/Simulinkand real-time implementation are presented.","PeriodicalId":144567,"journal":{"name":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI.2017.8285689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a discrete-time backstepping controller based on a neural model for a Quanser 2-Degree Of Freedom (DOF) helicopter. The proposed controller is used to track the pitch and yaw position references independently. This controller is based on a Recurrent High Order Neural Network (RHONN) trained with an Extended Kalman Filter (EKF). The RHONN works as an identifier to obtain an adequate Quanser 2-DOF helicopter mathematic model, which is robust in presence of disturbances and parameter variations. To examine the robustness of the proposed controller, simulations using Matlab/Simulinkand real-time implementation are presented.
直升机原型机的实时神经反步控制
提出了一种基于神经网络模型的广义二自由度直升机离散时间反步控制器。该控制器用于独立跟踪俯仰和偏航位置参考。该控制器基于经扩展卡尔曼滤波(EKF)训练的循环高阶神经网络(RHONN)。RHONN作为一种辨识器来获得一个足够的全瑟二自由度直升机数学模型,该模型在存在干扰和参数变化时具有鲁棒性。为了检验所提出的控制器的鲁棒性,使用Matlab/ simulink进行了仿真并进行了实时实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信