Mean-Payoff Games on Timed Automata

Shibashis Guha, M. Jurdzinski, S. Krishna, Ashutosh Trivedi
{"title":"Mean-Payoff Games on Timed Automata","authors":"Shibashis Guha, M. Jurdzinski, S. Krishna, Ashutosh Trivedi","doi":"10.4230/LIPIcs.FSTTCS.2016.44","DOIUrl":null,"url":null,"abstract":"Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2016.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space.
基于时间自动机的平均收益游戏
时间自动机上的平均收益博弈是在两个玩家(最小玩家和最大玩家)之间的定价时间自动机配置的无限加权图上进行的,通过沿着图的状态移动令牌来形成无限运行。最小玩家的目标是最小化跑步的极限平均重量,而最大玩家的目标则相反。Brenguier, Cassez和Raskin最近研究了这些游戏的变体,并表明对于具有5个或更多时钟的时间自动机来说,平均收益游戏是不可确定的。我们通过证明具有三个时钟的平均收益博弈的不确定性来改进这一结果。在积极的方面,我们展示了具有二元价格率的单时钟定时自动机的平均收益博弈的可决定性。本文的一个关键贡献是将基于动态规划的证明技术应用于不可数状态和动作空间上的平均奖励优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信