Image noise removal framework based on morphological component analysis

S. Janardhana, J. Jaya, K. J. Sabareesaan, Jaina George
{"title":"Image noise removal framework based on morphological component analysis","authors":"S. Janardhana, J. Jaya, K. J. Sabareesaan, Jaina George","doi":"10.1109/ICCTET.2013.6675912","DOIUrl":null,"url":null,"abstract":"Now image denoising is an important process in image processing. The proposed method focuses on rain streak removal frame work based on morphological component analysis. Bilateral filter is used in the denoising stage. Then the filtered image partitioned into low frequency and high frequency component. The high frequency component undergone various processes such as patch extraction, dictionary learning and dictionary partitioning. The output of dictionary partitioning approach undergone morphological component analysis as an image decomposition process. As a result, the rain component can be successfully removed from the image while preserving most of the original image details.","PeriodicalId":242568,"journal":{"name":"2013 International Conference on Current Trends in Engineering and Technology (ICCTET)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Current Trends in Engineering and Technology (ICCTET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTET.2013.6675912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Now image denoising is an important process in image processing. The proposed method focuses on rain streak removal frame work based on morphological component analysis. Bilateral filter is used in the denoising stage. Then the filtered image partitioned into low frequency and high frequency component. The high frequency component undergone various processes such as patch extraction, dictionary learning and dictionary partitioning. The output of dictionary partitioning approach undergone morphological component analysis as an image decomposition process. As a result, the rain component can be successfully removed from the image while preserving most of the original image details.
基于形态分量分析的图像去噪框架
图像去噪是图像处理中的一个重要环节。提出了一种基于形态成分分析的雨纹去除框架方法。在去噪阶段采用双边滤波。然后将滤波后的图像分割为低频分量和高频分量。高频分量经过了补丁提取、字典学习和字典划分等过程。字典划分方法的输出作为图像分解过程进行形态成分分析。因此,可以成功地从图像中删除rain组件,同时保留大部分原始图像细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信