Kalman Filtering Applied to Induction Motor State Estimation

Yassine Zahraoui, M. Akherraz
{"title":"Kalman Filtering Applied to Induction Motor State Estimation","authors":"Yassine Zahraoui, M. Akherraz","doi":"10.5772/intechopen.92871","DOIUrl":null,"url":null,"abstract":"This chapter presents a full definition and explanation of Kalman filtering theory, precisely the filter stochastic algorithm. After the definition, a concrete example of application is explained. The simulated example concerns an extended Kalman filter applied to machine state and speed estimation. A full observation of an induction motor state variables and mechanical speed will be presented and discussed in details. A comparison between extended Kalman filtering and adaptive Luenberger state observation will be highlighted and discussed in detail with many figures. In conclusion, the chapter is ended by listing the Kalman filtering main advantages and recent advances in the scientific literature.","PeriodicalId":250840,"journal":{"name":"Dynamic Data Assimilation - Beating the Uncertainties","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Data Assimilation - Beating the Uncertainties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This chapter presents a full definition and explanation of Kalman filtering theory, precisely the filter stochastic algorithm. After the definition, a concrete example of application is explained. The simulated example concerns an extended Kalman filter applied to machine state and speed estimation. A full observation of an induction motor state variables and mechanical speed will be presented and discussed in details. A comparison between extended Kalman filtering and adaptive Luenberger state observation will be highlighted and discussed in detail with many figures. In conclusion, the chapter is ended by listing the Kalman filtering main advantages and recent advances in the scientific literature.
卡尔曼滤波在感应电机状态估计中的应用
本章给出了卡尔曼滤波理论的完整定义和解释,准确地说是滤波随机算法。定义后,给出了具体应用实例。仿真示例涉及应用于机器状态和速度估计的扩展卡尔曼滤波。对感应电动机状态变量和机械速度的全面观察将被提出并详细讨论。扩展卡尔曼滤波和自适应Luenberger状态观测之间的比较将被突出和详细讨论。最后,本章最后列举了卡尔曼滤波的主要优点和最新的科学文献进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信