OCAE: Organization-Controlled Autoencoder for Unsupervised Speech Emotion Analysis

Siwei Wang, Catherine Soladié, R. Séguier
{"title":"OCAE: Organization-Controlled Autoencoder for Unsupervised Speech Emotion Analysis","authors":"Siwei Wang, Catherine Soladié, R. Séguier","doi":"10.1109/icfsp48124.2019.8938073","DOIUrl":null,"url":null,"abstract":"One of the severe obstacles to speech emotion analysis is the lack of reasonable labelled speech signal. Thus, an important issue to be considered is applying an unsupervised method to generate a representation in low dimension to analyze emotions. Such a representation coming from data needs to be stable and meaningful, just like the 2D or 3D representation of emotions elaborated by psychology. In this paper, we propose a fully unsupervised approach, called Organization-Controlled AutoEncoder (OCAE), combining autoencoder with PCA to build an emotional representation. We utilize the result of PCA on speech features to control the organization of the data in the latent space of autoencoder, through adding an organization loss to the classical objective function. Indeed, PCA can keep the organization of the data, whereas autoencoder leads to better discrimination of the data. By combining both, we can take advantage of each method. The results on Emo-DB and SEMAINE database show that our representation generated in an unsupervised manner is meaningful and stable.","PeriodicalId":162584,"journal":{"name":"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icfsp48124.2019.8938073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the severe obstacles to speech emotion analysis is the lack of reasonable labelled speech signal. Thus, an important issue to be considered is applying an unsupervised method to generate a representation in low dimension to analyze emotions. Such a representation coming from data needs to be stable and meaningful, just like the 2D or 3D representation of emotions elaborated by psychology. In this paper, we propose a fully unsupervised approach, called Organization-Controlled AutoEncoder (OCAE), combining autoencoder with PCA to build an emotional representation. We utilize the result of PCA on speech features to control the organization of the data in the latent space of autoencoder, through adding an organization loss to the classical objective function. Indeed, PCA can keep the organization of the data, whereas autoencoder leads to better discrimination of the data. By combining both, we can take advantage of each method. The results on Emo-DB and SEMAINE database show that our representation generated in an unsupervised manner is meaningful and stable.
组织控制的无监督语音情感分析自动编码器
语音情感分析的严重障碍之一是缺乏合理的标记语音信号。因此,应用无监督方法生成低维表示来分析情绪是一个需要考虑的重要问题。这种来自数据的表现需要稳定和有意义,就像心理学对情绪的二维或三维表现一样。在本文中,我们提出了一种完全无监督的方法,称为组织控制的自动编码器(OCAE),将自动编码器与PCA相结合来构建情感表示。我们利用语音特征的主成分分析结果,通过在经典目标函数中加入组织损失来控制自编码器潜在空间中数据的组织。事实上,PCA可以保持数据的组织,而自编码器可以更好地识别数据。通过将两者结合起来,我们可以利用每种方法的优势。在Emo-DB和SEMAINE数据库上的结果表明,我们以无监督方式生成的表示是有意义的和稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信