An Improved Neural Network Algorithm and its Application in Sinter Cost Prediction

Bin Wang, Bin Yang, Jinfang Sheng, Meng Chen, Guoqiang He
{"title":"An Improved Neural Network Algorithm and its Application in Sinter Cost Prediction","authors":"Bin Wang, Bin Yang, Jinfang Sheng, Meng Chen, Guoqiang He","doi":"10.1109/WKDD.2009.180","DOIUrl":null,"url":null,"abstract":"This paper studies various training algorithms of BP neural network and proposes an improved conjugate gradient algorithm which combines conjugate gradient algorithm with inexact line search route based on generalized Curry principle. The proposed algorithm has global convergence, optimizes the learning steps using new line search rules and improves the convergence speed. The new algorithm is applied in the cost prediction of actual sintering production. Simulation results show that the algorithm has better convergence compared with traditional conjugate gradient algorithms. The MSE of prediction is 0.0098 and accuracy rate reaches 94.31%.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"387 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper studies various training algorithms of BP neural network and proposes an improved conjugate gradient algorithm which combines conjugate gradient algorithm with inexact line search route based on generalized Curry principle. The proposed algorithm has global convergence, optimizes the learning steps using new line search rules and improves the convergence speed. The new algorithm is applied in the cost prediction of actual sintering production. Simulation results show that the algorithm has better convergence compared with traditional conjugate gradient algorithms. The MSE of prediction is 0.0098 and accuracy rate reaches 94.31%.
一种改进神经网络算法及其在烧结成本预测中的应用
本文研究了BP神经网络的各种训练算法,提出了一种基于广义Curry原理将共轭梯度算法与不精确直线搜索路径相结合的改进共轭梯度算法。该算法具有全局收敛性,利用新的行搜索规则优化学习步骤,提高了收敛速度。将该算法应用于烧结生产的成本预测中。仿真结果表明,与传统的共轭梯度算法相比,该算法具有更好的收敛性。预测的MSE为0.0098,准确率达到94.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信