Load Forecasting under extreme climatic conditions

B. Kermanshahi, C. H. Poskar, G. Swift, A. Silk, W. Buhr
{"title":"Load Forecasting under extreme climatic conditions","authors":"B. Kermanshahi, C. H. Poskar, G. Swift, A. Silk, W. Buhr","doi":"10.1109/APT.1993.673906","DOIUrl":null,"url":null,"abstract":"An artificial ricu~al nctwoik is applied to forccast tiic short tcrin load unclcr cxtrciiic clinintic conditions. Historical (lata collcctcd over a period of 3 ycars (e.g. calendar years 1990, 1991, and 1992) is used for lraining and tesling the proposed A\" network. Based on tile kiiowri differenccs among the load responses for thc days of tlic week, aseparatc ANNis uscd forcach day ofthe week: scvcti ANN'S in all. In ttic forecasting stagc, the ANN nctwork is supplied wilh only the input data Ior thc Iorccastcd day and tlie nctwork presents a 24 liour load forccast foi that (lay a t one time. Very accurate results have been obk1incd for all days of the week..","PeriodicalId":241767,"journal":{"name":"Proceedings. Joint International Power Conference Athens Power Tech,","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Joint International Power Conference Athens Power Tech,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APT.1993.673906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

An artificial ricu~al nctwoik is applied to forccast tiic short tcrin load unclcr cxtrciiic clinintic conditions. Historical (lata collcctcd over a period of 3 ycars (e.g. calendar years 1990, 1991, and 1992) is used for lraining and tesling the proposed A" network. Based on tile kiiowri differenccs among the load responses for thc days of tlic week, aseparatc ANNis uscd forcach day ofthe week: scvcti ANN'S in all. In ttic forecasting stagc, the ANN nctwork is supplied wilh only the input data Ior thc Iorccastcd day and tlie nctwork presents a 24 liour load forccast foi that (lay a t one time. Very accurate results have been obk1incd for all days of the week..
极端气候条件下的负荷预测
将人工神经网络应用于临床条件下的短负荷预测。过去3年(如历年1990、1991和1992)收集的历史数据用于训练和测试所建议的a”网络。基于一周内3天负荷响应的总体差异,对一周内的每一天分别使用人工神经网络,共使用6个人工神经网络。在预测阶段,人工神经网络只提供预测当天的输入数据,网络给出24小时的负荷预测结果。一周中的每一天都得到了非常准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信