{"title":"Verifying message-passing programs with dependent behavioural types","authors":"A. Scalas, N. Yoshida, Elias Benussi","doi":"10.1145/3314221.3322484","DOIUrl":null,"url":null,"abstract":"Concurrent and distributed programming is notoriously hard. Modern languages and toolkits ease this difficulty by offering message-passing abstractions, such as actors (e.g., Erlang, Akka, Orleans) or processes (e.g., Go): they allow for simpler reasoning w.r.t. shared-memory concurrency, but do not ensure that a program implements a given specification. To address this challenge, it would be desirable to specify and verify the intended behaviour of message-passing applications using types, and ensure that, if a program type-checks and compiles, then it will run and communicate as desired. We develop this idea in theory and practice. We formalise a concurrent functional language λ≤π, with a new blend of behavioural types (from π-calculus theory), and dependent function types (from the Dotty programming language, a.k.a. the future Scala 3). Our theory yields four main payoffs: (1) it verifies safety and liveness properties of programs via type-level model checking; (2) unlike previous work, it accurately verifies channel-passing (covering a typical pattern of actor programs) and higher-order interaction (i.e., sending/receiving mobile code); (3) it is directly embedded in Dotty, as a toolkit called Effpi, offering a simplified actor-based API; (4) it enables an efficient runtime system for Effpi, for highly concurrent programs with millions of processes/actors.","PeriodicalId":441774,"journal":{"name":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314221.3322484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Concurrent and distributed programming is notoriously hard. Modern languages and toolkits ease this difficulty by offering message-passing abstractions, such as actors (e.g., Erlang, Akka, Orleans) or processes (e.g., Go): they allow for simpler reasoning w.r.t. shared-memory concurrency, but do not ensure that a program implements a given specification. To address this challenge, it would be desirable to specify and verify the intended behaviour of message-passing applications using types, and ensure that, if a program type-checks and compiles, then it will run and communicate as desired. We develop this idea in theory and practice. We formalise a concurrent functional language λ≤π, with a new blend of behavioural types (from π-calculus theory), and dependent function types (from the Dotty programming language, a.k.a. the future Scala 3). Our theory yields four main payoffs: (1) it verifies safety and liveness properties of programs via type-level model checking; (2) unlike previous work, it accurately verifies channel-passing (covering a typical pattern of actor programs) and higher-order interaction (i.e., sending/receiving mobile code); (3) it is directly embedded in Dotty, as a toolkit called Effpi, offering a simplified actor-based API; (4) it enables an efficient runtime system for Effpi, for highly concurrent programs with millions of processes/actors.