Automated cell identification with 3D optical imaging

B. Javidi, T. O’Connor, A. Anand, I. Moon, A. Markman
{"title":"Automated cell identification with 3D optical imaging","authors":"B. Javidi, T. O’Connor, A. Anand, I. Moon, A. Markman","doi":"10.1117/12.2527573","DOIUrl":null,"url":null,"abstract":"In this keynote address paper, we overview recently published works on the current techniques and methods for automated cell identification with 3D optical imaging using compact and field portable systems. 3D imaging systems including digital holographic microscopy systems as well as lensless pseudorandom phase encoding systems are capable of capturing 3D information of microscopic objects such as biological cells which allows for highly accurate automated cell identification. Systems based on digital holography enable reconstruction of the cell’s 3D optical path length profile. The reconstructed 3D profiles can be used to extract morphological and spatio-temporal cell features from biological samples for classification and cell identification. Similarly, pseudorandom encoding techniques such as single random phase encoding (SRPE) and double random phase encoding (DRPE) can be used to encode 3D cell information into opto-biological signatures which can be used for cell identification tasks. Recent advancements in these areas are presented including compact and field-portable 3D-printed shearing digital holographic microscopy systems, integration of digital holographic microscopy with head mounted augmented reality devices, and the use of spatio-temporal features extracted from cell membrane fluctuations for sickle cell disease diagnosis.","PeriodicalId":308921,"journal":{"name":"Optical Methods for Inspection, Characterization, and Imaging of Biomaterials IV","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Methods for Inspection, Characterization, and Imaging of Biomaterials IV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2527573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this keynote address paper, we overview recently published works on the current techniques and methods for automated cell identification with 3D optical imaging using compact and field portable systems. 3D imaging systems including digital holographic microscopy systems as well as lensless pseudorandom phase encoding systems are capable of capturing 3D information of microscopic objects such as biological cells which allows for highly accurate automated cell identification. Systems based on digital holography enable reconstruction of the cell’s 3D optical path length profile. The reconstructed 3D profiles can be used to extract morphological and spatio-temporal cell features from biological samples for classification and cell identification. Similarly, pseudorandom encoding techniques such as single random phase encoding (SRPE) and double random phase encoding (DRPE) can be used to encode 3D cell information into opto-biological signatures which can be used for cell identification tasks. Recent advancements in these areas are presented including compact and field-portable 3D-printed shearing digital holographic microscopy systems, integration of digital holographic microscopy with head mounted augmented reality devices, and the use of spatio-temporal features extracted from cell membrane fluctuations for sickle cell disease diagnosis.
自动细胞识别与三维光学成像
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信