Similarity detection between Turkish text documents with distance metrics

Mümine Kaya Keleş, S. A. Özel
{"title":"Similarity detection between Turkish text documents with distance metrics","authors":"Mümine Kaya Keleş, S. A. Özel","doi":"10.1109/UBMK.2017.8093399","DOIUrl":null,"url":null,"abstract":"The aim of this study is to compare the successes of various distance metrics and to determine the most appropriate methods in order to detect similarities among textual documents written in Turkish. Computing similarities between text documents is the basic step of plagiarism detection, and text mining methods like author detection, text classification and clustering. Therefore, plagiarism detection and text mining applications will be more successful by using the distance metrics that are determined according to the results obtained in this study. For this purpose, chunks of texts in different lengths are selected as the experimental dataset in this study. After that, preprocessing methods are applied to the dataset that is used; therefore new and different experimental scenarios are created by removing stopwords and Turkish characters, and stemming words with Zemberek. According to the experimental results, it is observed that the preprocessing phase increases the accuracy of similarity detection. Especially, stemming using Zemberek increases the success rate. In all cases, the Cosine Similarity method has been observed as more successful than other distance metrics, because of producing more realistic results.","PeriodicalId":201903,"journal":{"name":"2017 International Conference on Computer Science and Engineering (UBMK)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2017.8093399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The aim of this study is to compare the successes of various distance metrics and to determine the most appropriate methods in order to detect similarities among textual documents written in Turkish. Computing similarities between text documents is the basic step of plagiarism detection, and text mining methods like author detection, text classification and clustering. Therefore, plagiarism detection and text mining applications will be more successful by using the distance metrics that are determined according to the results obtained in this study. For this purpose, chunks of texts in different lengths are selected as the experimental dataset in this study. After that, preprocessing methods are applied to the dataset that is used; therefore new and different experimental scenarios are created by removing stopwords and Turkish characters, and stemming words with Zemberek. According to the experimental results, it is observed that the preprocessing phase increases the accuracy of similarity detection. Especially, stemming using Zemberek increases the success rate. In all cases, the Cosine Similarity method has been observed as more successful than other distance metrics, because of producing more realistic results.
具有距离度量的土耳其文本文档之间的相似性检测
本研究的目的是比较各种距离度量的成功,并确定最合适的方法,以便检测用土耳其语编写的文本文件之间的相似性。计算文本文档之间的相似度是抄袭检测的基本步骤,也是作者检测、文本分类和聚类等文本挖掘方法的基本步骤。因此,使用根据本研究获得的结果确定的距离度量,剽窃检测和文本挖掘应用将更加成功。为此,本研究选择不同长度的文本块作为实验数据集。然后,对使用的数据集应用预处理方法;因此,通过删除停止词和土耳其字符,以及用Zemberek提取单词,可以创建新的和不同的实验场景。实验结果表明,预处理阶段提高了相似度检测的准确性。特别是,使用Zemberek词干可以提高成功率。在所有情况下,余弦相似度方法已被观察到比其他距离度量更成功,因为产生更现实的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信