{"title":"3-D survey with a modular ground-penetrating radar system at the Roman town Mariana (Corsica)","authors":"L. Verdonck, F. Vermeulen","doi":"10.1109/IWAGPR.2011.5963872","DOIUrl":null,"url":null,"abstract":"Recently, the use of ground-penetrating radar (GPR) arrays with a large number of antenna elements in a fixed configuration has become more common. The investment needed for these systems is significant. Although gradually expandable modular systems, consisting of antennas which can be used independently, do not match the fast acquisition of detailed datasets by means of multi-channel arrays, they can help finding a compromise between increased acquisition speed and (limited) resources. In modular systems, the separation between transmitter-receiver pairs is often larger than the sampling distance prescribed by the Nyquist theorem. As a consequence, additional profiles have to be recorded in between, which requires a high positioning precision. As a completely identical response for the different antennas in an array is difficult to achieve, stripes can occur in the horizontal slices, especially when ringing occurs. This complicates the interpretation of features in the direction of the survey lines. In this paper, a threedimensional frequency-wavenumber filter is proposed, consisting in a combination of a circular filter and a fan filter. The application of this filter to GPR data collected at the Roman town Mariana (Corsica, France) showed a reduction of the stripe patterns, allowing a more reliable characterization of subtle archaeological structures.","PeriodicalId":130006,"journal":{"name":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2011.5963872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recently, the use of ground-penetrating radar (GPR) arrays with a large number of antenna elements in a fixed configuration has become more common. The investment needed for these systems is significant. Although gradually expandable modular systems, consisting of antennas which can be used independently, do not match the fast acquisition of detailed datasets by means of multi-channel arrays, they can help finding a compromise between increased acquisition speed and (limited) resources. In modular systems, the separation between transmitter-receiver pairs is often larger than the sampling distance prescribed by the Nyquist theorem. As a consequence, additional profiles have to be recorded in between, which requires a high positioning precision. As a completely identical response for the different antennas in an array is difficult to achieve, stripes can occur in the horizontal slices, especially when ringing occurs. This complicates the interpretation of features in the direction of the survey lines. In this paper, a threedimensional frequency-wavenumber filter is proposed, consisting in a combination of a circular filter and a fan filter. The application of this filter to GPR data collected at the Roman town Mariana (Corsica, France) showed a reduction of the stripe patterns, allowing a more reliable characterization of subtle archaeological structures.