Selective Scan for Filter Operator of SciDB

Sangchul Kim, Seoung Gook Sohn, Taehoon Kim, Jinseon Yu, Bogyeong Kim, Bongki Moon
{"title":"Selective Scan for Filter Operator of SciDB","authors":"Sangchul Kim, Seoung Gook Sohn, Taehoon Kim, Jinseon Yu, Bogyeong Kim, Bongki Moon","doi":"10.1145/2949689.2949707","DOIUrl":null,"url":null,"abstract":"Recently there has been an increasing interest in analyzing scientific data generated by observations and scientific experiments. For managing these data efficiently, SciDB, a multi-dimensional array-based DBMS, is suggested. When SciDB processes a query with where predicates, it uses filter operator internally to produce a result array that matches the predicates. Most queries for scientific data analysis utilize spatial information. However, filter operator of SciDB reads all data without considering features of array-based DBMSs and spatial information. In this demo, we present an efficient query processing scheme utilizing characteristics of array-based data, implemented by employing coordinates. It uses a selective scan that retrieves data corresponding to a range that satisfies specific conditions. In our experiments, the selective scan is up to 30x faster than the original scan. We demonstrate that our implementation of the filter operator will reduce the processing time of a selection query significantly and enable SciDB to handle a massive amount of scientific data in more scalable manner.","PeriodicalId":254803,"journal":{"name":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2949689.2949707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently there has been an increasing interest in analyzing scientific data generated by observations and scientific experiments. For managing these data efficiently, SciDB, a multi-dimensional array-based DBMS, is suggested. When SciDB processes a query with where predicates, it uses filter operator internally to produce a result array that matches the predicates. Most queries for scientific data analysis utilize spatial information. However, filter operator of SciDB reads all data without considering features of array-based DBMSs and spatial information. In this demo, we present an efficient query processing scheme utilizing characteristics of array-based data, implemented by employing coordinates. It uses a selective scan that retrieves data corresponding to a range that satisfies specific conditions. In our experiments, the selective scan is up to 30x faster than the original scan. We demonstrate that our implementation of the filter operator will reduce the processing time of a selection query significantly and enable SciDB to handle a massive amount of scientific data in more scalable manner.
选择性扫描筛选算子的SciDB
最近,人们对分析由观察和科学实验产生的科学数据越来越感兴趣。为了有效地管理这些数据,建议采用基于多维数组的数据库管理系统SciDB。当SciDB处理带有where谓词的查询时,它在内部使用筛选操作符来生成与谓词匹配的结果数组。大多数科学数据分析查询都利用空间信息。但是,SciDB的filter算子读取所有数据,没有考虑基于数组的dbms的特点和空间信息。在这个演示中,我们提出了一个有效的查询处理方案,利用基于数组的数据的特征,通过使用坐标实现。它使用选择性扫描,检索满足特定条件的范围对应的数据。在我们的实验中,选择性扫描的速度比原始扫描快30倍。我们证明了过滤器操作符的实现将显著减少选择查询的处理时间,并使SciDB能够以更具可扩展性的方式处理大量科学数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信