Application of ensemble learning approach in function approximation for dimensional synthesis of a 6 DOF parallel manipulator

D. Modungwa, N. Tlale, Bhekisipho Twala
{"title":"Application of ensemble learning approach in function approximation for dimensional synthesis of a 6 DOF parallel manipulator","authors":"D. Modungwa, N. Tlale, Bhekisipho Twala","doi":"10.1109/ROBOMECH.2013.6685487","DOIUrl":null,"url":null,"abstract":"Presented in this paper is an investigation of the use of ensemble methods in machine learning for developing function approximation models of the analytical objective function, to be applied to an optimization search process of a 6 DOF parallel manipulator. The process of optimization of these mechanisms can be cumbersome, as it often involves complex objective functions and diverse design parameters. The use of ensemble methods in machine learning methods combination is demonstrated and evaluated against the individual or base methods using dataset from a parallel robotic manipulator. Experiments are carried out to determine whether an ensemble performs better than the base methods.","PeriodicalId":143604,"journal":{"name":"2013 6th Robotics and Mechatronics Conference (RobMech)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th Robotics and Mechatronics Conference (RobMech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOMECH.2013.6685487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Presented in this paper is an investigation of the use of ensemble methods in machine learning for developing function approximation models of the analytical objective function, to be applied to an optimization search process of a 6 DOF parallel manipulator. The process of optimization of these mechanisms can be cumbersome, as it often involves complex objective functions and diverse design parameters. The use of ensemble methods in machine learning methods combination is demonstrated and evaluated against the individual or base methods using dataset from a parallel robotic manipulator. Experiments are carried out to determine whether an ensemble performs better than the base methods.
集成学习方法在6自由度并联机械臂尺寸综合函数逼近中的应用
本文研究了在机器学习中使用集成方法来建立解析目标函数的函数逼近模型,并将其应用于6自由度并联机械臂的优化搜索过程。这些机构的优化过程可能是繁琐的,因为它往往涉及复杂的目标函数和不同的设计参数。在机器学习方法组合中使用集成方法,并使用来自并行机器人操纵器的数据集对单个或基本方法进行了演示和评估。进行了实验,以确定集成是否优于基本方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信