{"title":"A speaker adaptation technique for Gaussian process regression based speech synthesis using feature space transform","authors":"Tomoki Koriyama, Syohei Oshio, Takao Kobayashi","doi":"10.1109/ICASSP.2016.7472751","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a speaker adaptation technique for statistical parametric speech synthesis based on Gaussian process regression (GPR). Although it is reported that the GPR-based speech synthesis improves the naturalness of synthetic speech compared with the HMM-based speech synthesis, any speaker adaptation techniques for the GPR-based one have not been established. This is because GPR is a nonparametric model and hence it is impossible to directly apply linear transforms to model parameters. In the proposed technique, we introduce feature-space transform to achieve model adaptation in the framework of GPR-based speech synthesis. Experimental results of objective and subjective tests show that the proposed technique outperforms the conventional HMM-based speaker adaptation framework.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we propose a speaker adaptation technique for statistical parametric speech synthesis based on Gaussian process regression (GPR). Although it is reported that the GPR-based speech synthesis improves the naturalness of synthetic speech compared with the HMM-based speech synthesis, any speaker adaptation techniques for the GPR-based one have not been established. This is because GPR is a nonparametric model and hence it is impossible to directly apply linear transforms to model parameters. In the proposed technique, we introduce feature-space transform to achieve model adaptation in the framework of GPR-based speech synthesis. Experimental results of objective and subjective tests show that the proposed technique outperforms the conventional HMM-based speaker adaptation framework.