Named Entity Recognition for Spoken Finnish

Dejan Porjazovski, Juho Leinonen, M. Kurimo
{"title":"Named Entity Recognition for Spoken Finnish","authors":"Dejan Porjazovski, Juho Leinonen, M. Kurimo","doi":"10.1145/3422839.3423066","DOIUrl":null,"url":null,"abstract":"In this paper we present a Bidirectional LSTM neural network with a Conditional Random Field layer on top, which utilizes word, character and morph embeddings in order to perform named entity recognition on various Finnish datasets. To overcome the lack of annotated training corpora that arises when dealing with low-resource languages like Finnish, we tried a knowledge transfer technique to transfer tags from Estonian dataset. On the human annotated in-domain Digitoday dataset, out system achieved F1 score of 84.73. On the out-of-domain Wikipedia set we got F1 score of 67.66. In order to see how well the system performs on speech data, we used two datasets containing automatic speech recognition outputs. Since we do not have true labels for those datasets, we used a rule-based system to annotate them and used those annotations as reference labels. On the first dataset which contains Finnish parliament sessions we obtained F1 score of 42.09 and on the second one which contains talks from Yle Pressiklubi we obtained F1 score of 74.54.","PeriodicalId":270338,"journal":{"name":"Proceedings of the 2nd International Workshop on AI for Smart TV Content Production, Access and Delivery","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on AI for Smart TV Content Production, Access and Delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3422839.3423066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we present a Bidirectional LSTM neural network with a Conditional Random Field layer on top, which utilizes word, character and morph embeddings in order to perform named entity recognition on various Finnish datasets. To overcome the lack of annotated training corpora that arises when dealing with low-resource languages like Finnish, we tried a knowledge transfer technique to transfer tags from Estonian dataset. On the human annotated in-domain Digitoday dataset, out system achieved F1 score of 84.73. On the out-of-domain Wikipedia set we got F1 score of 67.66. In order to see how well the system performs on speech data, we used two datasets containing automatic speech recognition outputs. Since we do not have true labels for those datasets, we used a rule-based system to annotate them and used those annotations as reference labels. On the first dataset which contains Finnish parliament sessions we obtained F1 score of 42.09 and on the second one which contains talks from Yle Pressiklubi we obtained F1 score of 74.54.
芬兰语口语的命名实体识别
在本文中,我们提出了一个双向LSTM神经网络,其顶部有一个条件随机场层,它利用词、字符和形态嵌入来对各种芬兰数据集进行命名实体识别。为了克服在处理像芬兰语这样的低资源语言时出现的缺乏注释的训练语料库的问题,我们尝试了一种知识转移技术来转移爱沙尼亚数据集的标签。在人类标注的域内数据集Digitoday上,我们的系统获得了84.73的F1分数。在域外维基百科集合上,我们获得了67.66的F1分数。为了观察系统在语音数据上的表现,我们使用了两个包含自动语音识别输出的数据集。由于这些数据集没有真正的标签,我们使用基于规则的系统对它们进行注释,并将这些注释用作参考标签。在包含芬兰议会会议的第一个数据集上,我们获得了42.09的F1分数,在包含Yle Pressiklubi谈话的第二个数据集上,我们获得了74.54的F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信