{"title":"An Iterative Mitchell's Algorithm Based Multiplier","authors":"Z. Babic, A. Avramović, P. Bulić","doi":"10.1109/ISSPIT.2008.4775704","DOIUrl":null,"url":null,"abstract":"This paper presents a new multiplier with possibility to achieve an arbitrary accuracy. The multiplier is based upon the same idea of numbers representation as Mitchell's algorithm, but does not use logarithm approximation. The proposed iterative algorithm is simple and efficient, achieving an error percentage as small as required, until the exact result. Hardware solution involves adders and shifters, so it is not gate and power consuming. Parallel circuits are used for error correction. The error summary for operands ranging from 8-bits to 16-bits operands indicates very low error percentage with only two parallel correction circuits.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper presents a new multiplier with possibility to achieve an arbitrary accuracy. The multiplier is based upon the same idea of numbers representation as Mitchell's algorithm, but does not use logarithm approximation. The proposed iterative algorithm is simple and efficient, achieving an error percentage as small as required, until the exact result. Hardware solution involves adders and shifters, so it is not gate and power consuming. Parallel circuits are used for error correction. The error summary for operands ranging from 8-bits to 16-bits operands indicates very low error percentage with only two parallel correction circuits.