{"title":"Passively Enhanced Natural Convection Heat Transfer via Swirl Effect","authors":"L. D. Liddo, D. Naylor","doi":"10.32393/csme.2020.50","DOIUrl":null,"url":null,"abstract":"A numerical and experimental study, in the preliminary stages, has been conducted examining the effect of swirling flow on the natural convective heat transfer rate from a flat, horizontal, heated, upward facing, isothermal circular disk surrounded by insulation.","PeriodicalId":184087,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 3","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Canadian Mechanical Engineering. Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32393/csme.2020.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A numerical and experimental study, in the preliminary stages, has been conducted examining the effect of swirling flow on the natural convective heat transfer rate from a flat, horizontal, heated, upward facing, isothermal circular disk surrounded by insulation.