BitBench: a benchmark for bitstream computing

Kyle Daruwalla, Heng Zhuo, C. Schulz, Mikko H. Lipasti
{"title":"BitBench: a benchmark for bitstream computing","authors":"Kyle Daruwalla, Heng Zhuo, C. Schulz, Mikko H. Lipasti","doi":"10.1145/3316482.3326355","DOIUrl":null,"url":null,"abstract":"With the recent increase in ultra-low power applications, researchers are investigating alternative architectures that can operate on streaming input data. These target use cases require complex algorithms that must be evaluated under a real-time deadline, but also satisfy the strict available power budget. Stochastic computing (SC) is an example of an alternative paradigm where the data is represented as single bitstreams, allowing designers to implement operations such as multiplication using a simple AND gate. Consequently, the resulting design is both low area and low power. Similarly, traditional digital filters can take advantage of streaming inputs to effectively choose coefficients, resulting in a low cost implementation. In this work, we construct six key algorithms to characterize bitstream computing. We present these algorithms as a new benchmark suite: BitBench.","PeriodicalId":256029,"journal":{"name":"Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316482.3326355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the recent increase in ultra-low power applications, researchers are investigating alternative architectures that can operate on streaming input data. These target use cases require complex algorithms that must be evaluated under a real-time deadline, but also satisfy the strict available power budget. Stochastic computing (SC) is an example of an alternative paradigm where the data is represented as single bitstreams, allowing designers to implement operations such as multiplication using a simple AND gate. Consequently, the resulting design is both low area and low power. Similarly, traditional digital filters can take advantage of streaming inputs to effectively choose coefficients, resulting in a low cost implementation. In this work, we construct six key algorithms to characterize bitstream computing. We present these algorithms as a new benchmark suite: BitBench.
BitBench:比特流计算基准
随着最近超低功耗应用的增加,研究人员正在研究可以处理流输入数据的替代架构。这些目标用例需要复杂的算法,必须在实时截止日期下进行评估,但也要满足严格的可用功率预算。随机计算(SC)是另一种范式的一个例子,其中数据表示为单个比特流,允许设计人员使用简单的与门来实现乘法等操作。因此,最终的设计是低面积和低功耗。同样,传统的数字滤波器可以利用流输入来有效地选择系数,从而实现低成本。在这项工作中,我们构建了六个关键算法来表征比特流计算。我们将这些算法作为一个新的基准套件:BitBench。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信