Solving parabolic equations with radial basis meshless domain decomposition method

Qin Xinqiang, Su Pengxiang, Duan Xianbao, Miao Baoshan
{"title":"Solving parabolic equations with radial basis meshless domain decomposition method","authors":"Qin Xinqiang, Su Pengxiang, Duan Xianbao, Miao Baoshan","doi":"10.1109/CSAE.2011.5952686","DOIUrl":null,"url":null,"abstract":"The configuration matrix obtained through the global radial basis function collocation method is usually an asymmetry full matrix and highly ill-conditioned for parabolic equations. To overcome the deficiencies, a radial basis meshless domain decomposition algorithm is proposed. It has the advantages of both the radial basis collocation method and the domain decomposition method. The new method can transform the solution to a large-scale problem into the solutions to several small sub-area ones. It effectively reduce the condition numbers of the collocation matrix. It is shown by numerical example that this method improves the stability and accelerates convergence of the numerical solution to parabolic equations.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The configuration matrix obtained through the global radial basis function collocation method is usually an asymmetry full matrix and highly ill-conditioned for parabolic equations. To overcome the deficiencies, a radial basis meshless domain decomposition algorithm is proposed. It has the advantages of both the radial basis collocation method and the domain decomposition method. The new method can transform the solution to a large-scale problem into the solutions to several small sub-area ones. It effectively reduce the condition numbers of the collocation matrix. It is shown by numerical example that this method improves the stability and accelerates convergence of the numerical solution to parabolic equations.
径向基无网格区域分解法求解抛物方程
全局径向基函数配置法得到的构型矩阵通常是不对称的满矩阵,对抛物型方程来说是高度病态的。针对这一不足,提出了一种径向基无网格区域分解算法。它兼有径向基配置法和区域分解法的优点。该方法可以将大规模问题的解转化为若干小区域问题的解。它有效地减少了配置矩阵的条件个数。数值算例表明,该方法提高了抛物型方程数值解的稳定性和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信