Neural Markovian Predictive Compression: An Algorithm for Online Lossless Data Compression

Erez Shermer, M. Avigal, Dana Shapira
{"title":"Neural Markovian Predictive Compression: An Algorithm for Online Lossless Data Compression","authors":"Erez Shermer, M. Avigal, Dana Shapira","doi":"10.1109/DCC.2010.26","DOIUrl":null,"url":null,"abstract":"This work proposes a novel practical and general-purpose lossless compression algorithm named Neural Markovian Predictive Compression (NMPC), based on a novel combination of Bayesian Neural Networks (BNNs) and Hidden Markov Models (HMM). The result is an interesting combination of properties: Linear processing time, constant memory storage performance and great adaptability to parallelism. Though not limited for such uses, when used for online compression (compressing streaming inputs without the latency of collecting blocks) it often produces superior results compared to other algorithms for this purpose. It is also a natural algorithm to be implemented on parallel platforms such as FPGA chips.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This work proposes a novel practical and general-purpose lossless compression algorithm named Neural Markovian Predictive Compression (NMPC), based on a novel combination of Bayesian Neural Networks (BNNs) and Hidden Markov Models (HMM). The result is an interesting combination of properties: Linear processing time, constant memory storage performance and great adaptability to parallelism. Though not limited for such uses, when used for online compression (compressing streaming inputs without the latency of collecting blocks) it often produces superior results compared to other algorithms for this purpose. It is also a natural algorithm to be implemented on parallel platforms such as FPGA chips.
神经马尔可夫预测压缩:一种在线无损数据压缩算法
这项工作提出了一种新的实用的通用无损压缩算法,称为神经马尔可夫预测压缩(NMPC),该算法基于贝叶斯神经网络(bnn)和隐马尔可夫模型(HMM)的新组合。其结果是一个有趣的属性组合:线性处理时间、恒定的内存存储性能和对并行性的良好适应性。虽然不限于这种用途,但当用于在线压缩(压缩流输入而没有收集块的延迟)时,与其他算法相比,它通常会产生更好的结果。它也是在FPGA芯片等并行平台上实现的自然算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信