Adaptive Field-Oriented Control of Permanent Magnet Synchronous Motor Using Feedfoward Actions

Naithan Peter, Nitendran Maniam, H. Mudaliar, M. Cirrincione, Ravneel Prasad, S. Chand, A. Fagiolini
{"title":"Adaptive Field-Oriented Control of Permanent Magnet Synchronous Motor Using Feedfoward Actions","authors":"Naithan Peter, Nitendran Maniam, H. Mudaliar, M. Cirrincione, Ravneel Prasad, S. Chand, A. Fagiolini","doi":"10.1109/IC_ASET58101.2023.10150634","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for estimating the mechanical parameters of a Permanent Magnet Synchronous Motor (PMSM) using the Forgetting Factor Recursive Least Squares (RLS) algorithm. The estimated parameters are used to perform adaptive feedforward control actions, as the mechanical parameters of a PMSM tend to change with varying loads and speed. The simulation of the proposed technique is carried out using MATLAB/Simulink® under different conditions. The results demonstrate the accuracy of the technique in estimating the mechanical parameters and enhancing the performance of the drive. The proposed technique offers a promising solution to control PMSMs under dynamic conditions and can be useful in various industrial applications. The methodology, simulation setup, and results are presented in this paper.","PeriodicalId":272261,"journal":{"name":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET58101.2023.10150634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method for estimating the mechanical parameters of a Permanent Magnet Synchronous Motor (PMSM) using the Forgetting Factor Recursive Least Squares (RLS) algorithm. The estimated parameters are used to perform adaptive feedforward control actions, as the mechanical parameters of a PMSM tend to change with varying loads and speed. The simulation of the proposed technique is carried out using MATLAB/Simulink® under different conditions. The results demonstrate the accuracy of the technique in estimating the mechanical parameters and enhancing the performance of the drive. The proposed technique offers a promising solution to control PMSMs under dynamic conditions and can be useful in various industrial applications. The methodology, simulation setup, and results are presented in this paper.
永磁同步电机前馈自适应磁场定向控制
提出了一种利用遗忘因子递推最小二乘(RLS)算法估计永磁同步电机机械参数的方法。由于永磁同步电机的机械参数会随着负载和速度的变化而变化,因此利用估计的参数进行自适应前馈控制。利用MATLAB/Simulink®对所提出的技术在不同条件下进行了仿真。结果表明,该技术在估计机械参数和提高传动性能方面是准确的。该技术为动态控制永磁同步电机提供了一种很有前途的解决方案,可用于各种工业应用。本文介绍了方法、仿真设置和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信