{"title":"Causal Mathematical Logic as a guiding framework for the prediction of “Intelligence Signals” in brain simulations","authors":"Felix Lanzalaco, S. Pissanetzky","doi":"10.2478/jagi-2013-0006","DOIUrl":null,"url":null,"abstract":"Abstract A recent theory of physical information based on the fundamental principles of causality and thermodynamics has proposed that a large number of observable life and intelligence signals can be described in terms of the Causal Mathematical Logic (CML), which is proposed to encode the natural principles of intelligence across any physical domain and substrate. We attempt to expound the current definition of CML, the “Action functional” as a theory in terms of its ability to possess a superior explanatory power for the current neuroscientific data we use to measure the mammalian brains “intelligence” processes at its most general biophysical level. Brain simulation projects define their success partly in terms of the emergence of “non-explicitly programmed” complex biophysical signals such as self-oscillation and spreading cortical waves. Here we propose to extend the causal theory to predict and guide the understanding of these more complex emergent “intelligence Signals”. To achieve this we review whether causal logic is consistent with, can explain and predict the function of complete perceptual processes associated with intelligence. Primarily those are defined as the range of Event Related Potentials (ERP) which include their primary subcomponents; Event Related Desynchronization (ERD) and Event Related Synchronization (ERS). This approach is aiming for a universal and predictive logic for neurosimulation and AGi. The result of this investigation has produced a general “Information Engine” model from translation of the ERD and ERS. The CML algorithm run in terms of action cost predicts ERP signal contents and is consistent with the fundamental laws of thermodynamics. A working substrate independent natural information logic would be a major asset. An information theory consistent with fundamental physics can be an AGi. It can also operate within genetic information space and provides a roadmap to understand the live biophysical operation of the phenotype","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jagi-2013-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract A recent theory of physical information based on the fundamental principles of causality and thermodynamics has proposed that a large number of observable life and intelligence signals can be described in terms of the Causal Mathematical Logic (CML), which is proposed to encode the natural principles of intelligence across any physical domain and substrate. We attempt to expound the current definition of CML, the “Action functional” as a theory in terms of its ability to possess a superior explanatory power for the current neuroscientific data we use to measure the mammalian brains “intelligence” processes at its most general biophysical level. Brain simulation projects define their success partly in terms of the emergence of “non-explicitly programmed” complex biophysical signals such as self-oscillation and spreading cortical waves. Here we propose to extend the causal theory to predict and guide the understanding of these more complex emergent “intelligence Signals”. To achieve this we review whether causal logic is consistent with, can explain and predict the function of complete perceptual processes associated with intelligence. Primarily those are defined as the range of Event Related Potentials (ERP) which include their primary subcomponents; Event Related Desynchronization (ERD) and Event Related Synchronization (ERS). This approach is aiming for a universal and predictive logic for neurosimulation and AGi. The result of this investigation has produced a general “Information Engine” model from translation of the ERD and ERS. The CML algorithm run in terms of action cost predicts ERP signal contents and is consistent with the fundamental laws of thermodynamics. A working substrate independent natural information logic would be a major asset. An information theory consistent with fundamental physics can be an AGi. It can also operate within genetic information space and provides a roadmap to understand the live biophysical operation of the phenotype