Conor McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, R. McEwen
{"title":"A deliberative architecture for AUV control","authors":"Conor McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, R. McEwen","doi":"10.1109/ROBOT.2008.4543343","DOIUrl":null,"url":null,"abstract":"Autonomous Underwater Vehicles (AUVs) are an increasingly important tool for oceanographic research demonstrating their capabilities to sample the water column in depths far beyond what humans are capable of visiting, and doing so routinely and cost-effectively. However, control of these platforms to date has relied on fixed sequences for execution of pre-planned actions limiting their effectiveness for measuring dynamic and episodic ocean phenomenon. In this paper we present an agent architecture developed to overcome this limitation through on-board planning using Constraint- based Reasoning. Preliminary versions of the architecture have been integrated and tested in simulation and at sea.","PeriodicalId":351230,"journal":{"name":"2008 IEEE International Conference on Robotics and Automation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"172","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2008.4543343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 172
Abstract
Autonomous Underwater Vehicles (AUVs) are an increasingly important tool for oceanographic research demonstrating their capabilities to sample the water column in depths far beyond what humans are capable of visiting, and doing so routinely and cost-effectively. However, control of these platforms to date has relied on fixed sequences for execution of pre-planned actions limiting their effectiveness for measuring dynamic and episodic ocean phenomenon. In this paper we present an agent architecture developed to overcome this limitation through on-board planning using Constraint- based Reasoning. Preliminary versions of the architecture have been integrated and tested in simulation and at sea.