SpecAugment Impact on Automatic Speaker Verification System

M. Faisal, S. Suyanto
{"title":"SpecAugment Impact on Automatic Speaker Verification System","authors":"M. Faisal, S. Suyanto","doi":"10.1109/ISRITI48646.2019.9034603","DOIUrl":null,"url":null,"abstract":"An automatic speaker verification (ASV) is one of the challenging problem in speech processing since there are so many models of machine learnings those capable of synthesizing a fake speech from a given text. This paper discusses the impact of SpecAugment to methods such as Gaussian Mixture Models (GMM) and Deep Neural Networks (DNNs). Some experiments on a speech dataset sampled from the ASVSpoof2019, which is specially made to tackle the threat of spoofing, show that DNNs produces an Equal Error Rate (EER) of 18.1% that is better than the GMM system with EER of 19.0%. And after combining with a traditional augmentation technique, the DNNs also gives a better EER of 15.3% than GMM with EER of 15.7%.","PeriodicalId":367363,"journal":{"name":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI48646.2019.9034603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

An automatic speaker verification (ASV) is one of the challenging problem in speech processing since there are so many models of machine learnings those capable of synthesizing a fake speech from a given text. This paper discusses the impact of SpecAugment to methods such as Gaussian Mixture Models (GMM) and Deep Neural Networks (DNNs). Some experiments on a speech dataset sampled from the ASVSpoof2019, which is specially made to tackle the threat of spoofing, show that DNNs produces an Equal Error Rate (EER) of 18.1% that is better than the GMM system with EER of 19.0%. And after combining with a traditional augmentation technique, the DNNs also gives a better EER of 15.3% than GMM with EER of 15.7%.
SpecAugment对自动说话人验证系统的影响
自动说话人验证(ASV)是语音处理中具有挑战性的问题之一,因为有很多机器学习模型能够从给定文本合成假语音。本文讨论了SpecAugment对高斯混合模型(GMM)和深度神经网络(dnn)等方法的影响。在ASVSpoof2019(专门用于解决欺骗威胁)中采样的语音数据集上的一些实验表明,DNNs产生的相等错误率(EER)为18.1%,优于EER为19.0%的GMM系统。与传统增强技术相结合后,dnn的识别率为15.3%,优于GMM的15.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信