Threaded multiple path execution

S. Wallace, B. Calder, D. Tullsen
{"title":"Threaded multiple path execution","authors":"S. Wallace, B. Calder, D. Tullsen","doi":"10.1109/ISCA.1998.694778","DOIUrl":null,"url":null,"abstract":"This paper presents Threaded Multi-Path Execution (TME), which exploits existing hardware on a Simultaneous Multithreading (SMT) processor to speculatively execute multiple paths of execution. When there are fewer threads in an SMT processor than hardware contexts, threaded multi-path execution uses spare contexts to fetch and execute code along the less likely path of hard-to-predict branches. This paper describes the hardware mechanisms needed to enable an SMT processor to efficiently spawn speculative threads for threaded multi-path execution. The Mapping Synchronization Bus is described which enables the spawning of these multiple paths. Policies are examined for deciding which branches to fork, and for managing competition between primary and alternate path threads for critical resources. Our results show that TME increases the single program performance of an SMT with eight thread contexts by 14%-23% on average, depending on the misprediction penalty, for programs with a high misprediction rate.","PeriodicalId":393075,"journal":{"name":"Proceedings. 25th Annual International Symposium on Computer Architecture (Cat. No.98CB36235)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 25th Annual International Symposium on Computer Architecture (Cat. No.98CB36235)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCA.1998.694778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155

Abstract

This paper presents Threaded Multi-Path Execution (TME), which exploits existing hardware on a Simultaneous Multithreading (SMT) processor to speculatively execute multiple paths of execution. When there are fewer threads in an SMT processor than hardware contexts, threaded multi-path execution uses spare contexts to fetch and execute code along the less likely path of hard-to-predict branches. This paper describes the hardware mechanisms needed to enable an SMT processor to efficiently spawn speculative threads for threaded multi-path execution. The Mapping Synchronization Bus is described which enables the spawning of these multiple paths. Policies are examined for deciding which branches to fork, and for managing competition between primary and alternate path threads for critical resources. Our results show that TME increases the single program performance of an SMT with eight thread contexts by 14%-23% on average, depending on the misprediction penalty, for programs with a high misprediction rate.
多线程多路径执行
本文提出了多线程多路径执行(TME),它利用同步多线程(SMT)处理器上现有的硬件来推测执行多路径执行。当SMT处理器中的线程少于硬件上下文时,线程多路径执行使用备用上下文沿着难以预测的分支中不太可能的路径获取和执行代码。本文描述了使SMT处理器能够有效地为线程多路径执行生成推测线程所需的硬件机制。描述了映射同步总线,它支持生成这些多条路径。对策略进行检查,以决定要派生哪些分支,并管理关键资源的主路径线程和备用路径线程之间的竞争。我们的研究结果表明,对于具有高错误预测率的程序,TME将具有8个线程上下文的SMT的单个程序性能平均提高14%-23%,具体取决于错误预测的惩罚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信