Activity recognition based on micro-Doppler signature with in-home Wi-Fi

Qingchao Chen, Bo Tan, K. Chetty, K. Woodbridge
{"title":"Activity recognition based on micro-Doppler signature with in-home Wi-Fi","authors":"Qingchao Chen, Bo Tan, K. Chetty, K. Woodbridge","doi":"10.1109/HealthCom.2016.7749457","DOIUrl":null,"url":null,"abstract":"Device free activity recognition and monitoring has become a promising research area with increasing public interest in pattern of life monitoring and chronic health conditions. This paper proposes a novel framework for in-home Wi-Fi signal-based activity recognition in e-healthcare applications using passive micro-Doppler (m-D) signature classification. The framework includes signal modeling, Doppler extraction and m-D classification. A data collection campaign was designed to verify the framework where six m-D signatures corresponding to typical daily activities are sucessfully detected and classified using our software defined radio (SDR) demo system. Analysis of the data focussed on potential discriminative characteristics, such as maximum Doppler frequency and time duration of activity. Finally, a sparsity induced classifier is applied for adaptting the method in healthcare application scenarios and the results are compared with those from the well-known Support Vector Machine (SVM) method.","PeriodicalId":167022,"journal":{"name":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2016.7749457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Device free activity recognition and monitoring has become a promising research area with increasing public interest in pattern of life monitoring and chronic health conditions. This paper proposes a novel framework for in-home Wi-Fi signal-based activity recognition in e-healthcare applications using passive micro-Doppler (m-D) signature classification. The framework includes signal modeling, Doppler extraction and m-D classification. A data collection campaign was designed to verify the framework where six m-D signatures corresponding to typical daily activities are sucessfully detected and classified using our software defined radio (SDR) demo system. Analysis of the data focussed on potential discriminative characteristics, such as maximum Doppler frequency and time duration of activity. Finally, a sparsity induced classifier is applied for adaptting the method in healthcare application scenarios and the results are compared with those from the well-known Support Vector Machine (SVM) method.
基于家庭Wi-Fi的微多普勒特征的活动识别
随着人们对生活模式监测和慢性健康状况的关注日益增加,无设备活动识别和监测已成为一个有前景的研究领域。本文提出了一种基于家庭Wi-Fi信号的电子医疗应用活动识别的新框架,该框架使用无源微多普勒(m-D)签名分类。该框架包括信号建模、多普勒提取和m-D分类。设计了一个数据收集活动来验证框架,其中使用我们的软件定义无线电(SDR)演示系统成功检测和分类了与典型日常活动对应的六个m-D签名。对数据的分析侧重于潜在的判别特征,如最大多普勒频率和活动持续时间。最后,将稀疏度诱导分类器应用于医疗保健应用场景,并将结果与支持向量机(SVM)方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信