Novel Halotolerant Cellulolytic Bacillus methylotrophicus RYC01101 Isolated from Ruminant Feces in Thailand and its Application for Bioethanol Production
{"title":"Novel Halotolerant Cellulolytic Bacillus methylotrophicus RYC01101 Isolated from Ruminant Feces in Thailand and its Application for Bioethanol Production","authors":"Aiya Chantarasiri","doi":"10.14416/J.IJAST.2014.07.001","DOIUrl":null,"url":null,"abstract":"One impediment of large-scale biofuel production from lignocellulosic biomass is the insufficiency of cellulolytic microorganisms that can overcome extreme conditions during the industrial process. This study emphasized the isolation of a novel efficient cellulolytic bacterium. A new Bacillus methylotrophicus RYC01101, isolated from ruminant feces in Thailand, produced a hydrolysis capacity greater than that of known cellulolytic bacteria (Cellulomonas sp.). Cellulase activities were investigated on CMCase activity and FPase activity by 0.230±0.004 and 0.080±0.007 U/mL, respectively. B. methylotrophicus RYC01101 was co-cultured with Saccharomyces cerevisiae TISTR 5111 for bioethanol production. The productivity of the bioethanol was 1.38±0.40 g/L after 120 hours of fermentation. Moreover, B. methylotrophicus RYC01101 could be grown in the presence of 10% (w/v) NaCl, which could be applied in the pretreatment step of biofuel production. This study was the first report on cellulolytic activity and the halotolerant ability of B. methylotrophicus.","PeriodicalId":352801,"journal":{"name":"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/J.IJAST.2014.07.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
One impediment of large-scale biofuel production from lignocellulosic biomass is the insufficiency of cellulolytic microorganisms that can overcome extreme conditions during the industrial process. This study emphasized the isolation of a novel efficient cellulolytic bacterium. A new Bacillus methylotrophicus RYC01101, isolated from ruminant feces in Thailand, produced a hydrolysis capacity greater than that of known cellulolytic bacteria (Cellulomonas sp.). Cellulase activities were investigated on CMCase activity and FPase activity by 0.230±0.004 and 0.080±0.007 U/mL, respectively. B. methylotrophicus RYC01101 was co-cultured with Saccharomyces cerevisiae TISTR 5111 for bioethanol production. The productivity of the bioethanol was 1.38±0.40 g/L after 120 hours of fermentation. Moreover, B. methylotrophicus RYC01101 could be grown in the presence of 10% (w/v) NaCl, which could be applied in the pretreatment step of biofuel production. This study was the first report on cellulolytic activity and the halotolerant ability of B. methylotrophicus.