A Second Order Discretization with Malliavin Weight and Quasi-Monte Carlo Method for Option Pricing

T. Yamada, Kenta Yamamoto
{"title":"A Second Order Discretization with Malliavin Weight and Quasi-Monte Carlo Method for Option Pricing","authors":"T. Yamada, Kenta Yamamoto","doi":"10.2139/ssrn.3012898","DOIUrl":null,"url":null,"abstract":"This paper shows an efficient second order discretization scheme of expectations of stochastic differential equations. We introduce smart Malliavin weight which is given by a simple polynomials of Brownian motions as an improvement of the scheme of Yamada (2017). A new quasi Monte Carlo simulation is proposed to attain an efficient option pricing scheme. Numerical examples for the SABR model are shown to illustrate the validity of the scheme.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3012898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper shows an efficient second order discretization scheme of expectations of stochastic differential equations. We introduce smart Malliavin weight which is given by a simple polynomials of Brownian motions as an improvement of the scheme of Yamada (2017). A new quasi Monte Carlo simulation is proposed to attain an efficient option pricing scheme. Numerical examples for the SABR model are shown to illustrate the validity of the scheme.
期权定价的二阶Malliavin权离散和拟蒙特卡罗方法
本文给出了随机微分方程期望的一种有效的二阶离散化格式。我们引入了由布朗运动的简单多项式给出的智能马利文权重,作为Yamada(2017)方案的改进。提出了一种新的拟蒙特卡罗模拟方法,以获得一种有效的期权定价方案。最后给出了SABR模型的数值算例,说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信