{"title":"A Second Order Discretization with Malliavin Weight and Quasi-Monte Carlo Method for Option Pricing","authors":"T. Yamada, Kenta Yamamoto","doi":"10.2139/ssrn.3012898","DOIUrl":null,"url":null,"abstract":"This paper shows an efficient second order discretization scheme of expectations of stochastic differential equations. We introduce smart Malliavin weight which is given by a simple polynomials of Brownian motions as an improvement of the scheme of Yamada (2017). A new quasi Monte Carlo simulation is proposed to attain an efficient option pricing scheme. Numerical examples for the SABR model are shown to illustrate the validity of the scheme.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3012898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper shows an efficient second order discretization scheme of expectations of stochastic differential equations. We introduce smart Malliavin weight which is given by a simple polynomials of Brownian motions as an improvement of the scheme of Yamada (2017). A new quasi Monte Carlo simulation is proposed to attain an efficient option pricing scheme. Numerical examples for the SABR model are shown to illustrate the validity of the scheme.