P. Kudjo, Jinfu Chen, Minmin Zhou, Solomon Mensah, Rubing Huang
{"title":"Improving the Accuracy of Vulnerability Report Classification Using Term Frequency-Inverse Gravity Moment","authors":"P. Kudjo, Jinfu Chen, Minmin Zhou, Solomon Mensah, Rubing Huang","doi":"10.1109/QRS.2019.00041","DOIUrl":null,"url":null,"abstract":"Software vulnerability analysis is one of the critical issues in the software industry, and vulnerability classification plays a major role in this analysis. A typical vulnerability classification model usually involves a stage of term selection, in which the relevant terms are identified via feature selection. It also involves a stage of term weighting, in which document weights for the selected terms are computed, and a stage for classifier learning. Generally, the term frequency-inverse document frequency (TF-IDF) is the most widely used term-weighting method. However, empirical evidence shows that the TF-IDF is plagued with issues pertaining to its effectiveness. This paper introduces a new approach for vulnerability classification, which is based on term frequency and inverse gravity moment (TF-IGM). The proposed method is validated by empirical experiments using three machine learning algorithms on ten publicly available vulnerability datasets. The result shows that TF-IGM outperforms the benchmark method across the applications studied.","PeriodicalId":122665,"journal":{"name":"2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Software vulnerability analysis is one of the critical issues in the software industry, and vulnerability classification plays a major role in this analysis. A typical vulnerability classification model usually involves a stage of term selection, in which the relevant terms are identified via feature selection. It also involves a stage of term weighting, in which document weights for the selected terms are computed, and a stage for classifier learning. Generally, the term frequency-inverse document frequency (TF-IDF) is the most widely used term-weighting method. However, empirical evidence shows that the TF-IDF is plagued with issues pertaining to its effectiveness. This paper introduces a new approach for vulnerability classification, which is based on term frequency and inverse gravity moment (TF-IGM). The proposed method is validated by empirical experiments using three machine learning algorithms on ten publicly available vulnerability datasets. The result shows that TF-IGM outperforms the benchmark method across the applications studied.