{"title":"Data-driven property verification of grey-box systems by bayesian experiment design","authors":"S. Haesaert, P. V. D. Hof, A. Abate","doi":"10.1109/ACC.2015.7170994","DOIUrl":null,"url":null,"abstract":"A measurement-based statistical verification approach is developed for systems with partly unknown dynamics. These grey-box systems are subject to identification experiments which, new in this contribution, enable accepting or rejecting system properties expressed in a linear-time logic. We employ a Bayesian framework for the computation of a confidence level on the properties and for the design of optimal experiments. Applied to dynamical systems, this work enables data-driven verification of partly-known system dynamics with controllable non-determinism (inputs) and noisy output observations. A numerical case study concerning the safety of a dynamical system is used to elucidate this data-driven and model-based verification technique.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"376 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7170994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
A measurement-based statistical verification approach is developed for systems with partly unknown dynamics. These grey-box systems are subject to identification experiments which, new in this contribution, enable accepting or rejecting system properties expressed in a linear-time logic. We employ a Bayesian framework for the computation of a confidence level on the properties and for the design of optimal experiments. Applied to dynamical systems, this work enables data-driven verification of partly-known system dynamics with controllable non-determinism (inputs) and noisy output observations. A numerical case study concerning the safety of a dynamical system is used to elucidate this data-driven and model-based verification technique.